
KUBERNETES

DEPLOYMENT

PATTERNS

& SECURITY

The New Stack
Kubernetes Deployment & Security Patterns
Alex Williams, Founder & Editor-in-Chief

Core Team:
Bailey Math, AV Engineer
Benjamin Ball, Marketing Director
Gabriel H. Dinh, Executive Producer
Judy Williams, Copy Editor
Kiran Oliver, Podcast Producer
Krishnan Subramanian, Technical Editor
Lawrence Hecht, Research Director
Libby Clark, Editorial Director
Norris Deajon, AV Engineer

3Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

TABLE OF CONTENTS

Introduction .. 4

Sponsors .. 7

KUBERNETES DEPLOYMENT & SECURITY PATTERNS

What the Data Says About Kubernetes Deployments .. 8

KubeCon + CloudNativeCon: Strengthening the Kubernetes Core for Improved

Operations ...33

Kubernetes Deployment Patterns ...34

Twistlock: Why Cloud-Native Architectures Are Inherently More Secure61

Kubernetes Security Patterns ..62

Alcide: Securing a Kubernetes Deployment ...89

Closing ..90

Disclosure ..91

4Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

INTRODUCTION
Kubernetes is one of the largest open source projects in the world,
according to data from GitHub. It’s so big that the tools to manage the
development and deployment of Kubernetes are constantly catching up
to the momentum behind the open source technology.

This continual evolution makes Kubernetes deployment a bit of an
unsteady, fast-moving target. Still, the Kubernetes movement is the center
of attention for organizations at the leading edge of technology innovation
and adoption. Container technologies remain of great importance, but
now the deepest issues are about scaling containers in orchestration
environments. Containers are considered in context with Kubernetes.
There is no other standard to speak of that can support the market scale
that will be needed for containers to be used in production. The only
standard is Kubernetes. Others are supporters of the technology, but only
Kubernetes has enough wind behind it to steer the cloud-native
technology market.

From this context, we present the second ebook in our series about
Kubernetes. The market is now beyond the wonder of containers. It’s
beyond the early fascination with distributed architectures that may be
used across multiple cloud platforms. Even the Kubernetes technology
itself is getting boring, despite the fast pace of change. That’s a welcome
sign for an early market primed for its next big test. The big question is
now about the technology’s maturity: How well does Kubernetes work in
production? We still don’t know. It’s a question that cannot be resolved
quickly. And until it’s resolved, we won’t know how much of an impact
Kubernetes will truly have.

In its infancy, Kubernetes grew more than most any open source project
ever has. The project started at Google and was open-sourced in 2014

5Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

INTRODUCTION

under this new vision of cloud-native infrastructure. Since then, numerous
companies have joined the Cloud Native Computing Foundation, home of
the Kubernetes open source project. They have contributed greatly to the
platform, helping to define it and show the larger IT market that a multi-
cloud infrastructure has considerable value compared to the alternative.
There is no single provider, and hopefully there never will be. For
Kubernetes, a lot depends on how the infrastructure is developed. It can’t
be built all at once. The work will take years.

The project has now passed its early development and is in its early
adolescence. This transition has us thinking less about defining
Kubernetes and more so about what needs to be developed in order for
the technology to be viable in production. Success will be determined by
the overall direction of the Kubernetes community. Of central importance
is finding ways to make the community more inclusive of new voices and
contributions. The community must gain more trust with users while
patiently developing the orchestration project’s core. It’s a values question
at its heart: How contributors are directed by the values, vision and
objectives set by the most senior community leaders will play an
increasingly important part in how well the multitude of projects and
special-interest groups actually fare and participate in Kubernetes’ overall
development. The leaders have so far been outstanding in their work. It’s
time to build on the work they have already done.

How Kubernetes proves resilient to security threats will also serve as a
test of the platform’s longevity. Kubernetes deployment patterns that
prioritize security will lead the way toward faster integration of
container infrastructure and determine at what rate Kubernetes
adoption will occur. Once customers have confidence in the security of
Kubernetes deployments, it will manifest in the overall level of
production across the market.

http://www.thenewstack.io

6Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

INTRODUCTION

Security has to be baked into all deployments. But in a distributed, highly
scalable environment, typical security patterns will not suffice. It requires
an understanding of security in the context of Kubernetes. It is critical for
operations teams to understand Kubernetes security in terms of
containers, deployment and network security. Perimeters are now porous,
making traditional security methodologies less effective. Containers must
be secured at the node level, but also through the image and registry. This
means a lot of new learning will be needed for operations teams
developing and managing Kubernetes infrastructure. Security practices in
the context of various deployment models will be a challenge for
companies and will require particular attention.

Deployment pattern complexity decreases as the abstraction moves
towards the development layer. Security requirements change depending
upon the underlying infrastructure and the patterns used for
deployment. Thus, understanding security responsibilities and the role of
operations in various deployment patterns is of utmost importance for a
successful roll out.

This book aims to provide explanation and analysis about container
orchestration and security patterns for operations teams as they
transition from a world of virtual machines to containers. How companies
fare in the transition will depend on how effectively the Kubernetes
community can work together to strengthen the technology’s core.

Thanks, Alex.

Alex Williams
Founder and Editor-in-Chief
The New Stack

http://www.thenewstack.io

7Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

SPONSORS

We are grateful for the support of our ebook foundation sponsor:

And our sponsors for this ebook:

http://bit.ly/2DCTwne
http://bit.ly/2zazqgJ
http://bit.ly/2sOzS1A

8Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS
ABOUT KUBERNETES
DEPLOYMENTS
by LAWRENCE HECHT

T
he considerable growth in the Kubernetes market is well docu-
mented. It is by far the most widely used orchestration platform,
but it’s not the only one, preventing it from receiving full default

status. Kubernetes’ acceptance has forced it to mature quite fast and has
left the technology community to rapidly innovate. It has helped force a
disruption in the market as new and more established vendors now
compete in the cloud-native space.

Container technologies prompted the rise and development of the
Kubernetes orchestration platform. Today, the largest users of
containers are companies with more than 1,000 employees which run
their own data centers. These companies are also the largest users of
Kubernetes in production — a compelling reminder of the market
forces driving the project’s development and adoption. But these trends
only tell part of the story.

The rest of the story is a bit more complex. The transition to an
application-oriented architecture has just begun, and many forces in
the market will affect how we perceive this shift. They encompass the

http://www.thenewstack.io
https://thenewstack.io/author/lawrence-hecht/

9Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS

various types of workloads that an organization deploys, the size of
the organization and the breakdown of how users and vendors are
each developing cloud-native architectures for larger market
consumption.

Developers are finding containers transforming, adopting them at such a
scale that it becomes a complex process to understand how usage is
affecting the overall market. Data from our own research and a recent
survey by the Cloud Native Computing Foundation (CNCF) offers some
indication of the successes and challenges Kubernetes users encounter,
which in turn can illuminate the broader ecosystem shifts we are seeing
today. In the CNCF’s fall 2017 survey, 764 respondents were recruited
directly through outreach to CNCF participants, their social networks and
a larger community of cloud-native-leaning companies. The early results
of the survey, with 577 respondents, were published in a December 2017
blog post. Since then, CNCF received an additional 187 responses from a
questionnaire that was translated into Mandarin. Almost all (97 percent)
respondents were using containers in some way, while 61 percent were
using containers in production. Overall, 69 percent of respondents said
they were using Kubernetes to manage containers.

In addition to the CNCF survey, we also cite The New Stack’s own study
originally included in “The State of the Kubernetes Ecosystem.” Based on
responses collected in May 2017 from 470 individuals at organizations
using containers, the findings focused on the 62 percent of respondents
that were using Kubernetes in production.

Methodology and Container Adoption
Our analysis focuses primarily on an independent review of CNCF’s survey
data. Not only is it the most recent data available, but it also asked
in-depth questions about topics The New Stack’s May 2017 survey did not

http://www.thenewstack.io
http://bit.ly/2GBO5Dd
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://thenewstack.io/ebooks/kubernetes/state-of-kubernetes-ecosystem/

10Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS

cover. Although participant recruitment was not based on a random
sample, it represents a well-balanced cross-section of the IT community
that would be interested in using Kubernetes. For example, 30 percent of
respondents hold a DevOps or site reliability engineer (SRE) role and 42
percent have a developer or development management role. Technology
companies, including those involved with container or cloud solutions,
represent 53 percent of all respondents. Although this dwarves their
position in the overall economy, it may be representative of Kubernetes-
using companies. For most of the study’s results, the size, rather than the
industry of an organization, had a more significant impact. Only 22
percent of respondents work in organizations with less than 50
employees, while 27 percent are affiliated with those employing more
than 5,000 employees. Throughout this chapter, we take these
demographics into account when analyzing the data.

Administering the survey in Mandarin meant that, unlike other surveys,
CNCF’s was not dominated by respondents from North America.
Respondents from Asia and Europe represented 59 percent of the sample.
Due to the survey’s translation into Mandarin, the Asian sample was tilted
towards China as opposed to India or Japan. Although the survey
questions were identical, the data had to be transformed because of slight
variations in how the research instruments were programmed. In addition,
the specific responses for “other, please specify” options were not
translated from Mandarin to English. The data file used for this chapter is
available here.

Respondents to the Mandarin-translated survey are, in general, less far
along in their deployment of containers and Kubernetes. As mentioned
earlier, 97 percent of the sample use containers to some degree, and 61
percent do so in production environments. That figure drops to 32
percent in production for the Mandarin language respondents.

http://www.thenewstack.io
https://docs.google.com/spreadsheets/d/1JxQthFYuezyomxVcXhA8b7hkLVPv6x34DVLXt-B8T_Q/edit?usp=sharing

11Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS
Geographic Location of CNCF Survey Respondents

Other - 2%

Europe

Asia

North America

South America - 2%

Respondents using the
Mandarin questionnaire
account for two-thirds of
respondents from Asia.

That’s 24% of the total, and
on par with Europe.

Source: The New Stack Analysis of Cloud Native Computing Foundation survey conducted in Fall 2017.
Q. What is your geographic location? n=764.

35%

24%

24%

37%

FIG 1.1: Sixty-three percent of respondents came from outside of North America.

The New Stack believes that although China’s adoption may be several
months behind compared to its Western counterparts, differences also
arose for two other reasons. First, the Mandarin sample was much less
weighted towards tech companies, with only 39 percent of respondents
working in the tech sector compared to 58 percent for the rest of the
sample. Second, the English questionnaire may have been completed
more by early adopters that have been regularly attending CNCF and
Kubernetes conferences. In this context, we are again reminded that
KubeCon attendees are generally ahead of the curve compared to the
rest of the world.

Key Kubernetes Deployment Data Points
• Sixty-nine percent of organizations surveyed by CNCF use Kubernetes

to manage containers. However, Kubernetes is not the only

http://www.thenewstack.io

12Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS

orchestration method. Nearly two-thirds of Kubernetes users still
utilize another method to manage containers.

• Most users are deploying Kubernetes to a public cloud. Eighty-three
percent of Kubernetes-using organizations deploy it to at least one
public cloud.

• Although vendor-provided Kubernetes is becoming more common, 91
percent of deployments are handled internally.

• Security is the top container-related challenge among organizations
using Kubernetes. However, storage is the top challenge among
organizations that only deploy Kubernetes to on-premises servers.
Monitoring is the top challenge among those that only deploy
Kubernetes to public clouds.

• The more containers an organization uses, the more likely they are to
use Kubernetes. The number of containers being run changes the
need for container orchestration. While only 12 percent of total
respondents said the organizations they work for run more than 20
Kubernetes clusters, that number jumps to 35 percent for respondents
whose organizations run more than 1,000 containers.

• While NGINX is the leading Kubernetes ingress provider, HAProxy rivals
it among organizations with six or more clusters.

Kubernetes Overview
Over the last two years, surveys have shown that Kubernetes has a wide
lead over competitive offerings. At a high level, Kubernetes won the first
battle of the container orchestration wars. Companies with competitive
offerings, such as Docker and Mesosphere, now promote how their
products interoperate with Kubernetes. The major cloud providers have

http://www.thenewstack.io

13Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS

followed suit, with Alibaba Cloud, Amazon Web Services (AWS), Google
Cloud Platform, Huawei Cloud and Microsoft Azure offering services to
manage Kubernetes environments.

Today, Kubernetes is the leading choice for managing containers at scale,
but that does not mean it will remain so. Kubernetes deployments have
made a lot of progress over the last few years, moving from experiments
to managing production workloads. Yet most Kubernetes deployments
are still young and relatively small. Kubernetes’ central spot in IT
ecosystems is not guaranteed. Will Kubernetes become a niche
technology, specialized in orchestrating the resources to deploy
infrastructure at scale? Will developers move to platforms running on
containers that are differentiated on factors beyond whether or not
Kubernetes is inside?

This chapter does not predict the future. Nor does it pretend to report on
the percentage of enterprises that have adopted Kubernetes worldwide.
Instead, it describes the recent past, with a focus on organizations that
use containers and have started adopting Kubernetes. Relying on two
surveys of respondents who primarily work for container-using
organizations, this analysis will help readers gain perspective on their own
Kubernetes deployments.

Storage Matters for Large Organizations
Storage and networking technologies are pillars of data center
infrastructure, but were designed originally for client/server and
virtualized environments. Container technologies are leading companies
to rethink how storage and networking technologies should be
architected in a data center environment. We once thought about
configuring the machine with storage and networking. Now it’s a different
way of thinking as architectures become more application-oriented and

http://www.thenewstack.io

14Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS
24% of Organizations Run 1,000+ Containers at a Time.

That Percentage Jumps to 43% at Orgs. With 1,000+ Employees

Source: The New Stack Analysis of Cloud Native Computing Foundation survey conducted in Fall 2017. Q. How many containers
does your organization typically run? n=748; < 100 Employees, n=251; 100-999 Employees, n=212; 1,000+ Employees, n=285.

By Size of OrganizationAll Organizations

< 100

of employees

101 - 999

1,000+

5,000+

1,000 - 4,999

250 - 999

50 - 249

< 50

#
 o

f
C

o
n

ta
in

e
r
s

 R
u

n
n

in
g

 a
t

a
 T

im
e 25%

28%

23%

11%

13%

24%

28%
5%
2%

15%
12%

5%

24%
29%

17%

18%
30%

37%

15%
25%

38%

43%

FIG 1.2: Larger organizations have more containers running because they have more
workloads.

storage doesn’t necessarily live on the same machine as the application
or its services.

Larger companies tend to run more containers, and to do so in
scaled-out production environments that may require a new approach to
infrastructure. Twenty-eight percent of organizations with more than
1,000 employees are running more than 5,000 containers at a time, while
only four percent of the other organizations are running at such volume.
And 81 percent of large organizations with more than 1,000 containers
say they are running containers in production. This speaks to the fact
that large organizations by their very nature usually have a lot of
workloads. On the flip side, 38 percent of small organizations (< 100
employees) are running fewer than 50 containers versus only 15 percent
of the largest organizations.

http://www.thenewstack.io

15Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS

Kubernetes Adoption and Cloud
Deployments
CNCF provided a partial list of its projects (e.g., gRPC, Kubernetes,
OpenTracing, Prometheus) and asked in their survey if these cloud-native
technologies were being used or evaluated. In those responses, overall, 74
percent said Kubernetes is a cloud-native project they are using.

When asked in a separate question about how their organization
manages containers, 69 percent mentioned Kubernetes. Using more
containers most likely means the user will deploy with Kubernetes.The
percent of respondents using Kubernetes increases especially when
containers are deployed in higher volumes. For example, about 81
percent of respondents who run 1,000 or more containers say they use
Kubernetes.

There are some findings that show uses for Kubernetes without
containers. Interestingly, 15 percent of organizations that use the
Kubernetes project in production do not manage containers with it.
Some of these respondents, perhaps, use a platform or vendor-provided
tools that incorporate Kubernetes technology in a bundled solution. This
viewpoint is based on the fact that customers may be using any
combination of container management platforms or infrastructure. It
largely depends on their workloads and the infrastructure they use to run
microservices and composed applications. Although the distinction is
somewhat arbitrary, it appears that some people believe that using an
open source project means that you are personally deploying the source
code. Consequently, for the rest of this report, the term “Kubernetes
user” will refer to those that use the orchestration platform to manage
containers, rather than those that said they use the project itself.

Sixty-three percent of people who work in organizations that use

http://www.thenewstack.io

16Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS
Kubernetes Manages Containers at 69% of Organizations Surveyed

Source: The New Stack Analysis of Cloud Native Computing Foundation survey conducted in Fall 2017.
Q. Your organization manages containers with... (check all that apply)? n=763.

% of Orgs Using Each Tool or Platform

(including those using multiple)

Nomad
Oracle Cloud

Other (please specify)
Triton

CoreOS Tectonic

CAPS (Chef/Ansible/Puppet/Salt)

Rancher

Cloud Foundry

Mesos

Shell Scripts

OpenShift

Azure Container Service

Google Container Engine
(GKE, managed Kubernetes service)

Docker Swarm

Amazon ECS

Kubernetes 69%
20%

18%

17%
12%

12%

10%

9%

8%

7%

6%

4%

2%

1%

Of the 17% Google Container
Engine users, 85% said
they also use a generic form
of Kubernetes.

FIG 1.3: Kubernetes is the most common tool for container management.

Kubernetes name at least one other tool or method they also use to
manage containers.

Using a particular cloud environment influenced users’ Kubernetes
deployments:

• Sixty-seven percent of companies that use Kubernetes say they deploy
containers to AWS. The numbers drop to 57 percent for those on AWS
who actually deploy Kubernetes. Nineteen percent said they were also
using AWS Elastic Container Service (ECS) to manage containers.

• Microsoft Azure and Google Cloud Platform users are similar to AWS
customers in their usage pattern.

• A relatively low percentage of customers have adopted their cloud
provider’s branded container services. Instead, many of these

http://www.thenewstack.io

17Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS

Environments Running Containers Often Also Run Kubernetes

Source: The New Stack Analysis of Cloud Native Computing Foundation survey conducted in Fall 2017.
Q. Your company/organization deploys containers to which of the following environments? (check all that apply). n=527.
Q. Your company/organization runs Kubernetes to which of the following environments? (check all that apply). n=527.

10% 20% 30% 40% 50% 60% 70% 80%Other

Packet

Oracle Cloud

SAP Cloud Platform

IBM Bluemix

DigitalOcean

Alibaba Cloud

Microsoft Azure

OpenStack

Google Cloud Platform (GCP)

On-premises servers

Amazon Web Services (AWS)

Running containers

Running Kubernetes

Running cloud provider's
branded container service

FIG 1.4: People will do their own Kubernetes deployments on cloud services, forego-
ing the branded offering from the cloud provider.

organizations were deploying a Kubernetes distribution directly onto
the cloud provider’s infrastructure.

The more employees in an organization or the more containers that
are running, the higher the likelihood that Kubernetes is being
deployed to on-premises servers. Many organizations are using multi-
cloud environments. These customers are making a conscious decision
to run workloads in different environments based on security, price
and performance considerations. There is little evidence that these
factors are instrumental in the decision regarding where Kubernetes is
actually deployed. Simply, it’s more a factor of workloads and the
infrastructure chosen to run Kubernetes. Larger companies run lots of
containers on-premises, but they may also use cloud services for
managing containers.

http://www.thenewstack.io

18Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS
Big Differences Between On-Premises-Only

vs. Public Cloud-Only Organizations

Source: The New Stack Analysis of Cloud Native Computing Foundation survey conducted in Fall 2017.
Q. Your company/organization deploys containers to which of the following environments? (check all that apply).
 Containers Deployed Only to On-premise Servers, n=90; Containers Deployed Only to Public Cloud, n=298.
Q. What industry does your company/organization belong to?
Q. Your organization manages containers with... (check all that apply)?
 Containers Only On-premise Servers, n=90; Containers Deployed, but Only to Public Cloud, n=297.
Q. Is your organization using serverless technology?
 Containers Deployed Only to On-premise Servers n=89; Containers Deployed Only to Public Cloud, n=293.

Organization Managing
Containers With Kubernetes

Organization Using
Serverless Technology

Technology Company,
Including Container/Cloud

Solutions Vendor

On-Premises Only

Public Cloud Only

Average (independent of
deployment environment)

33%

53%

53%

12%

34%

29%

52%

62%

69%

FIG 1.5: Organizations manage containers according to workloads and available
infrastructure.

Organizations use multi-cloud environments three-quarters of the time.
The usage is a combination of public, private and on-premises services.
Organizations exclusively using cloud services are most likely to be
technology companies. Serverless technology adoption among cloud-only
organizations is also about three times that of companies that only deploy
containers on-premises. And Kubernetes use increases considerably
among organizations that deploy containers to multiple types of clouds.

Size of Deployments — Clusters
Most organizations run far fewer than 20 clusters. Running containers at
scale is largely limited to companies with on-premises deployments, cloud
service providers and organizations using cloud services. In summary, the
stark difference in container usage is most apparent when companies are
running more than 1,000 containers.

http://www.thenewstack.io

19Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS

OpenStack Adopters Tend to Have More Containers
as Well as More Clusters

Source: The New Stack Analysis of Cloud Native Computing Foundation survey conducted in Fall 2017.
Q. If you use Kubernetes, how many production clusters do you have?
< 1,000 Containers, n=336; 1,000+ Containers, n=130. Kubernetes Not Running on OpenStack, n=338; Kubernetes Running on OpenStack, n=111.

Running to OpenStack?By # of Containers

#
 o

f
K

u
b

e
r
n

e
te

s
 C

lu
s

te
r
s

Not Running on OpenStack

Running on OpenStack

< 1,000 Containers

1,000+ Containers

50+

21 - 50

11 - 20

6 - 10

2 - 5

1
23%

51%
28%

17%
20%

5%
11%

2%
9%

2%
26% 20%

5%

7%
3%

5%
11%

18%
15%

32%
50%

12%
21%

5%

FIG 1.6: Seventy-four percent of organizations with less than 1,000 containers
running have five or fewer Kubernetes clusters.

It’s a multi-faceted matter: Container usage is so widespread that
understanding deployment can become quite nuanced. Analysis shows
how deeply Kubernetes is being used across multiple types of workloads
and infrastructure. Gaining an understanding of deployment becomes a
matter of analyzing the workloads and the infrastructure where the
services are running.

In one respect, container users may be deploying on cloud services and
on their own infrastructure. Organizations using Kubernetes may also be
using it in a limited manner on cloud services, but not their own
infrastructure. Then again, they may also be running containers
exclusively on their own infrastructure. Cloud services, arguably, stand at
the center of the market, by hosting containers for customers while
simultaneously building out their own container environments.

http://www.thenewstack.io

20Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS

OpenStack users running Kubernetes are primarily large organizations that
run 1,000 or more containers. It is noteworthy that the Mandarin language
study participants were more likely than others to be both running large
deployments within private data centers and running OpenStack.

Challenges
People face a wide range of problems when using or deploying
Kubernetes. While some challenges are unique to Kubernetes, many
others are typical of the growing pains seen with the adoption of many
technologies. “The State of the Kubernetes Ecosystem” reported on both
the importance of different criteria in picking a container orchestration
solution and the major factors inhibiting the adoption of Kubernetes.
Scaling was more likely to be an essential requirement for an
orchestration solution compared to criteria such as security or resource
optimization. Among the biggest challenges mentioned was the fact that
using Kubernetes often necessitated changes in the roles or
responsibilities of several parts of the IT organization.

The CNCF survey asked about the challenges people face in using or
deploying containers in general. We took those answers and narrowed the
focus to just organizations using Kubernetes to manage containers. This
provides a way to illustrate the issues facing Kubernetes users.

The results show that complexity — a common criticism of Kubernetes
— is only the fifth most cited challenge. In the lead are infrastructure-
related challenges. Security was cited by 46 percent of Kubernetes users,
with networking and storage coming in second and third place.

Twenty-three percent said scaling deployments based on load is a
challenge. This likely means that many requirements have been met, with
Kubernetes actually helping with scaling as it is supposed to do. At the

http://www.thenewstack.io
https://thenewstack.io/ebooks/kubernetes/state-of-kubernetes-ecosystem/

21Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS
Security is Top Challenge for Kubernetes Users

Source: The New Stack Analysis of Cloud Native Computing Foundation survey conducted in Fall 2017. Q. What are your challenges in using/
deploying containers? (check all that apply). n=527.Note, only respondents managing containers with Kubernetes were included in the chart.

% of Respondents Facing Each Challenge

(select all that apply)

Finding vendor support

Difficulty in choosing
an orchestration solution

Scaling deployments
based upon load

Reliability

Logging

Complexity

Monitoring

Storage

Networking

Security 46%

42%

41%

38%

37%

32%

27%

23%

22%

10%

Among organizations only
deploying containers to
on-premises servers, 54% cited
storage as a challenge but
only 9% cited scaling
deployments based on load.

FIG 1.7: More than 40 percent say that security, networking and storage are contain-
er-related challenges.

bottom of the list, 10 percent mentioned problems getting vendor
support. One reason there are few complaints about vendor support for
Kubernetes is that many deployments are not dependent on a vendor’s
distribution. Looking forward, there is a high likelihood that high-quality
services will be available because the CNCF has recently introduced the
Kubernetes Certified Service Provider program to guarantee that service
providers meet a certain level of competence.

As in other studies, we found that larger organizations were more likely to
cite many issues as challenges they care about. For example, 55 percent of
organizations with 1,000 or more employees said security is a challenge,
while only 39 percent of organizations with fewer than 100 employees said
the same. In this case, as well as with other categories like reliability, it is
likely that large enterprises’ needs are different than those at smaller

http://www.thenewstack.io

22Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS
The Larger the Company, the More Likely

the Kubernetes User Is to Face Container Challenges

Source: The New Stack Analysis of Cloud Native Computing Foundation survey conducted in Fall 2017. Q. What are your challenges in
using/deploying containers? (check all that apply). n=527; < 100 Employees, n=286; 100-999 Employees, n=140; 1,000+ Employees, n=203.
Note, only respondents managing containers with Kubernetes were included in the chart

10 20% 30% 40% 50% 60%
Finding vendor support

Difficulty in choosing
an orchestration solution

Scaling deployments
based upon load

Reliability

Logging

Complexity

Monitoring

Storage

Networking

Security

< 100 employees

100 - 999 employess

1,000+ employees

FIG 1.8: Security and networking are more likely to be cited as a container-related
challenge at organizations with 1,000 or more employees.

organizations. In other areas, such as networking, it is possible that the
size and breadth of the IT infrastructure (bandwidth and number of sites)
present Kubernetes with more unique challenges as compared to just the
number of containers being used. In fact, among organizations with six or
more clusters, the percentage citing networking as a challenge jumped
from 42 to 53 percent.

A few challenges did not fit the aforementioned pattern. For storage, an
explanation may be that the technology “issues” are not based on
scalability. In the case of monitoring, midsize companies are more likely
to face challenges. As we described previously in the article Rethinking
Monitoring for Container Operations, smaller organizations generally
have less need to create a formal monitoring process, while larger ones
have the resources to create a more robust, customized monitoring

http://www.thenewstack.io
https://thenewstack.io/monitoring-reset-containers/
https://thenewstack.io/monitoring-reset-containers/

23Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS
Storage and Complexity Are Bigger Challenges for

On-Premises-Only Container Users

Source: The New Stack Analysis of Cloud Native Computing Foundation survey conducted in Fall 2017. Q. What are your challenges in using/deploying
containers? (check all that apply). Containers Deployed Only to On-premise Servers n=46; Containers Deployed Only to Public Cloud, n=183.
Note, only respondents managing containers with Kubernetes were included in the chart.

10% 20% 30% 40% 50% 60%Finding vendor support

Scaling deployments
based upon load

Difficulty in choosing
an orchestration solution

Logging

Reliability

Monitoring

Networking

Security

Complexity

Storage

On-Premises-Only

Public Cloud-Only

Perhaps because the
cloud providers’ monitoring
and logging systems
may not play well with
organizations’ other tools,
resulting in challenges.

FIG 1.9: Fifty-four percent of on-premises-only container users face storage challeng-
es compared to 34 percent of public cloud-only organizations.

system. Stuck in the middle are those organizations with 100 to 999
employees.

Another factor that affects an organization’s container-related challenges
is whether or not they are exclusively deploying containers to a public
cloud or to on-premises servers. Among those that just use on-premises
servers for containers, storage was the most common challenge. This
may be because these organizations manage their own storage
infrastructure, possibly even handled by a separate IT team. For
organizations only using containers on a public cloud, monitoring and
logging were more often cited as a challenge. Though cloud providers are
supposed to enable scalability, organizations only using on-premises
servers for containers were significantly less likely to say scaling
deployments is a challenge.

http://www.thenewstack.io

24Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS

OpenStorage Is the Most Used Cloud-Native Storage Project
Among Kubernetes Users

Source: The New Stack Analysis of Cloud Native Computing Foundation survey conducted in Fall 2017.
Q. Which of these cloud native storage projects is your organization using? n=527.
Note, only respondents managing containers with Kubernetes were included in the chart.

% of Respondents Using Each Storage Project

(select all that apply)

LibStorage/REX-Ray

Other

Rook

Minio

OpenSDS

OpenEBS

OpenStorage 12%

7%

6%

6%

4%

3%

2%

FIG 1.10: Twelve percent of Kubernetes-using organizations have adopted
technology from the OpenStorage project.

Tools and Infrastructure Surrounding
Kubernetes
The CNCF survey also asked about several types of cloud-native
infrastructure and tools, some of which are specifically marketed as
working well with Kubernetes. The following section is based solely on the
respondents who use Kubernetes to manage containers. Thus, even
when the tools are not directly managing Kubernetes deployments, we
do get a sense of the environments being used alongside Kubernetes.

Storage
The top cloud-native storage project among Kubernetes users is
OpenStorage, followed by Minio, OpenEBS and OpenSDS. The
questionnaire did not originally include OpenEBS, but it was added as

http://www.thenewstack.io

25Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS

Flannel & Calico Are the Most Used Network Plugin Providers
Among Kubernetes Users

Source: The New Stack Analysis of Cloud Native Computing Foundation survey conducted in Fall 2017.
Q. What network plugin providers are you using? Please select all that apply. English n=445; Mandarin, n=187.
Note, only respondents managing containers with Kubernetes were included in the chart.

% of Orgs Using Each Network Plugin Provider

(including those using multiple)

Romana

Trireme

Cilium

Other

Nuage

Contiv

Canal

Weave Net

Kubenet

CNI Primitives (e.g., bridge, p2p)

Kubernetes-Provider Default

Calico

Flannel 38%
35%

27%
20%

17%
15%

5%
4%

2%
2%
2%

1%
0.4%

Canal is a project from
Tigera that combines
Flannel and Calico.

FIG 1.11: Open source projects Flannel and Calico are the most widely used network
plugins among organizations managing containers with Kubernetes.

an option a few days after the survey launched. Excluding the first batch
of respondents, OpenEBS’ second place position increases slightly.

Networking
When asked about network plugin providers, Flannel came out on top,
used by 38 percent of Kubernetes users, followed by Project Calico at 35
percent. The next most likely response was that a Kubernetes provider’s
default networking option was used. The results are similar to those from
The New Stack’s survey, which asked what software-defined networking
solution was used in Kubernetes implementations.

The CNCF survey also asked how clusters are exposed to external
services, such as from the internet or other virtual machines. At 59
percent, the most common response was load-balancer services. L7
ingress and node-port services were also used, but less often.

http://www.thenewstack.io

26Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS
Public Cloud-Only Organizations More Likely to

Rely on Load Balancer Services That Don’t Need Integration

Source: The New Stack Analysis of Cloud Native Computing Foundation survey conducted in Fall 2017.
Q. How do you expose Cluster External Services (e.g., Internet, other VMs)? Please select all that apply. n=464;
Containers Deployed Only to On-premise Servers n=39; Containers Deployed Only to Public Cloud, n=160.
Note, only respondents managing containers with Kubernetes were included in the chart

By Type of Deployment All Organizations

T
y

p
e

 o
f

S
e

r
v

ic
e

s

On-Premises Only

Public Cloud OnlyIntegration with
third-party Load-Balancer

(e.g.,hardware load-balancer)

Node-Ports Services

L7 Ingress

Load-Balancer Services 59%

35%

29%

28%
19%

28%

26%

33%

31%

38%

60%
38%

FIG 1.12: Fifty-nine percent of Kubernetes users expose external services with
load-balancer services.

Organizations that only deploy containers to on-premises servers were 37
percent less likely to use load-balancing services. Instead, they were
almost 50 percent more likely to use an integrated approach that might
include a hardware-based load balancer. These organizations may be
using an integrated approach because their networking teams have
already invested in a hardware solution. In these cases, organizations have
one more moving part that they must manage instead of handle internally.

Respondents were asked specifically which ingress providers they used
for Kubernetes. At 56 percent, NGINX is the most used, followed by
HAProxy. Yet, usage patterns are different among organizations running six
or more Kubernetes clusters. Among this group, HAProxy use doubles
from 20 percent to 43 percent. The use of F5 Networks and Envoy also
doubles among organizations with these increased needs.

http://www.thenewstack.io

27Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS
NGINX and HAProxy Are Most Used Kubernetes Ingress Providers

Source: The New Stack Analysis of Cloud Native Computing Foundation survey conducted in Fall 2017.
Q. What Kubernetes ingress providers are you using? Please select all that apply. n=454; 1-5 Clusters, n=263; 6+ Clusters, n=160.

By # of Kubernetes ClustersAll Organizations

T
y

p
e

 o
f

In
g

r
e

s
s

 P
r
o

v
id

e
r
s

1 - 5 Clusters

6+ Clusters

GCP Load-Balancer
Controller (GLBC)

Envoy

None

F5 Networkst

Træfik

HAProxy

NGINX 56%

30%

13%

13%

12%

10%

10%

57%
53%

20%
43%

13%
14%

9%
18%

16%
6%

7%
15%

8%
14%

The likelihood that
HAProxy is used
doubles at organizations
with six or more clusters.

FIG 1.13: NGINX is the most used provider of Kubernetes ingress.

Monitoring and Logging
When it comes to monitoring and logging, CNCF did not ask specifically
about the tools used to track Kubernetes usage. That being said, the tools
mentioned are commonly used for container management and will be
familiar to the reader. For monitoring, Grafana is used by 64 percent of
organizations that manage containers with Kubernetes, with CNCF’s own
Prometheus following closely behind at 59 percent.

As is the case with many reviews of monitoring tools, the responses differ
significantly, with varying degrees of overlapping functionality. Grafana
and Graphite are primarily visualization tools, but Kibana, Elastic’s option,
was not included in the questionnaire. In addition, CNCF did not ask about
many monitoring vendors’ offerings, possibly because their heritage is
based on application instead of infrastructure monitoring.

http://www.thenewstack.io

28Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS
Grafana and Prometheus Are the Most

Widely Used for Monitoring Among Kubernetes Users

Source: The New Stack Analysis of Cloud Native Computing Foundation survey conducted in Fall 2017.
Q. What monitoring tools are you currently using? Please select all that apply. English n=489; Mandarin, n=187.
Note, only respondents managing containers with Kubernetes were included in the chart.

% of Respondents Using Each Monitoring Tool

(select all that apply)

Hawkular

Weaveworks

Stackdriver

OpenTSDB

Sysdig

Other

Graphite

Datadog

InfluxDB

Prometheus

Grafana 64%

59%

29%

22%

17%

14%

12%

10%

8%

5%

5%

Datadog and OpenTSDB are
cited much more often by
the Mandarin speaking sample.

FIG 1.14: Grafana and Prometheus are the most commonly used monitoring tools,
with InfluxDB coming in third.

Time series database InfluxDB was used by 29 percent of respondents,
and OpenTSDB was used by 10 percent. Although Prometheus can be set
up to provide functionality similar to a time series database, it doesn’t
necessarily replace the need for one. Among Prometheus-using
Kubernetes shops, InfluxDB’s adoption rate increases slightly at the same
time OpenTSDB use drops several percentage points.

Most monitoring stacks include a way to collect, process, store and
visualize data. The previous chart dealt with ways data is processed and
visualized. The next chart is about how it is stored. When asked what
logging tools they use, 74 percent of respondents said Elasticsearch,
which is part of the way in which the Elastic Stack (formerly known as ELK)
collects data. The specific logging tool in the stack is called Logstash.
Fluentd is used by half of respondents, often in place of Logstash. In fact,

http://www.thenewstack.io

29Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS
Elasticsearch and Fluentd Are the Most Widely Used

Logging Tools Among Kubernetes Users

Source: The New Stack Analysis of Cloud Native Computing Foundation survey conducted in Fall 2017.
Q. What logging tools are you currently using? Please select all that apply. n=472.
Note, only respondents managing containers with Kubernetes were included in the chart.

% of Respondents Using Each Logging Tool

(select all that apply)

Sematext

Logz.io

Logentries

Other

Loggly

Stackdriver

Sumo Logic

Graylog

Splunk

Fluentd

Elasticsearch 74%

50%

19%

14%

8%

7%

5%

5%

4%

4%

3%

Partly because it
is not open source,
Splunk is not used
as widely in China.

Logstash is the
specific logging tool
used most often
in conjunction with
Elasticsearch.

FIG 1.15: Elasticsearch (which is part of the larger Elastic Stack) is the most widely
used logging tool, but Fluentd is used by half of Kubernetes-deploying organizations.

the EFK acronym is often used to describe an Elasticsearch, Fluentd, and
Kibana stack. Splunk comes in third place, with its adoption inhibited by
the fact that it is not an open source project.

It appears that organizations continue to build custom monitoring
environments that simultaneously use multiple tools. Some respondents
complained that Prometheus does not solve their logging problems.
Below are direct quotes about what Kubernetes users want regarding
monitoring and logging:

• “For monitoring, Prometheus could support authorization and
authentication natively. When Prometheus is running inside
Kubernetes, it should allow users to create rules within the
Kubernetes API. Currently, we didn’t find a solution to easily deploy a

http://www.thenewstack.io

30Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS

production-ready logging solution for ELK stack, so we’ve ended up
building our own.”

• “Every vendor claims they interface with Kubernetes natively to pull
logging information; none of them actually work. We keep having to
write our own translator for whatever monitoring provider we go
with every time.”

• “The work on accelerating Prometheus is great. However, ‘local
storage only’ does not seem to us to be fully production ready, in that
we don’t trust that architecture as much as we do even new
containerized storage or similar.”

• “It would be nice to be able to gather metrics from running services/
pods in a unified way (pull). There is Prometheus, but we are using
InfluxDB and right now we can’t easily migrate to it since we already
have alerts and monitoring setup using Influx’s stack. Would be nice
to be able to plug in some other solutions.”

How Kubernetes Is Deployed
Chapter 2 will go into greater detail about the different options for you to
deploy Kubernetes. In our May 2017 survey, 45 percent of people running
Kubernetes in production were using a vendor-provided offering. Still, 74
percent were also using a community-supported distribution, meaning
that organizations are likely using different implementations, depending
on whether it is for test or production use cases. The CNCF questions
were not as in-depth about the subject, but with respondents using
multiple container management tools at the same time it is likely that
their organizations are using more than one Kubernetes tool or platform
at the same time.

The task of managing Kubernetes itself often falls to IT operations and SRE

http://www.thenewstack.io

31Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS

Kubernetes Deployments Typically Handled Internally
and Take More Time Than Expected

Source: The New Stack 2017 Kubernetes User Experience Survey. Q. Who helped implement the initial Kubernetes implementation?
Select all that apply. n=216. Q. Did the implementation take more or less time than expected? n=182.

OtherExternal company
with container,

Kubernetes
or DevOps focus

Another
internal
IT team

My team
or myself

12%

9%

78%

1%
Don't know or
not applicable

Less time
than

expected

As much time
as expected

More time
than
expected38%15%

41%

6%

How Long Did It Take?Who Implemented K8s?

FIG 1.16: Seventy-eight percent of respondents were directly involved with
Kubernetes implementations.

teams, with the DevOps role also being involved. In the May 2017 survey,
only nine percent of respondents had actually used a third-party to help
set up Kubernetes. Although people are deploying Kubernetes
themselves, this did not impact the belief that the technology was
meeting their goals. Nor did the fact that the hands-on deployments take
longer than expected affect their level of satisfaction.

When asked about how how long it took to implement Kubernetes, twice
as many respondents said it took more time than expected compared to
those that said it took less. This points to room for improvement, which is
expected to occur as experience with Kubernetes becomes more
widespread in the workforce. CNCF’s training and certification programs
aim to help accelerate workforce development and curtail a potential
skill shortage.

http://www.thenewstack.io
https://www.cncf.io/certification/training/
https://www.cncf.io/certification/expert/

32Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

WHAT THE DATA SAYS ABOUT KUBERNETES DEPLOYMENTS

Final Considerations for Deployment
You have already started on your Kubernetes journey. It appears to be
doing what you want it to do. The next decisions you face will be about
how to expand Kubernetes’ use in production environments. This chapter
shows that although current Kubernetes implementations are still
relatively small, many have moved beyond one-cluster experimentations.

Security, networking and storage are the top container challenges
Kubernetes users face. As these organizations scale up their use of
containers, they will face different challenges than those doing so in
public, cloud-only environments. On-premises-only organizations, which
are primarily challenged by storage, may want to pay attention to the top
cloud-native storage projects in use: Minio, OpenEBS, OpenSDS and
OpenStorage. For the public cloud-only Kubernetes deployments,
monitoring and logging were more likely to be mentioned as concerns.
These organizations should determine how they can integrate tools often
used with Kubernetes with the software that is already being offered by
their cloud provider.

When evaluating new services or solutions, consider how they will
integrate with your existing and future stack. Container networking has
started to standardize around Flannel and Project Calico, but there are
still many options that are supported.

These and many other considerations for Kubernetes deployments will be
covered in the next chapter. Rest assured that you can make these
decisions informed by the latest data alongside your own organization’s
needs, processes and structure.

http://www.thenewstack.io

33Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS 33

The goal for the Kubernetes community in 2018 is
to make Kubernetes rock solid. Over the past year,
the community has focused on building out the
Kubernetes core, such as networking, security and

storage. For the new year, we shouldn’t necessarily expect major
changes or even Kubernetes 2.0. Instead, it’s a year to focus on the
basics, providing a base on which different distribution providers
can build out their unique offerings.

In this context, The New Stack founder and Editor-in-Chief Alex
Williams discusses existing and emerging deployment patterns
with Ihor Dvoretskyi, developer advocate at the Cloud Native
Computing Foundation. The Kubernetes community is working
closely with the major cloud providers, all of which announced
native Kubernetes integration in 2017, to build out their offerings in
the coming year. As this work proceeds, Dvoretskyi says making the
Kubernetes core rock solid means ensuring the same functionality
of vanilla Kubernetes for any conformant distribution, regardless of
the type of deployment. Listen on SoundCloud.

Ihor Dvoretskyi is a developer advocate at the Cloud Native
Computing Foundation. He is a product manager for Kubernetes,
co-leading the Product Management Special Interest Group, focused

on enhancing Kubernetes as an open source product. In addition, he
participates in the Kubernetes release process as a features lead.

STRENGTHENING THE
KUBERNETES CORE FOR
IMPROVED OPERATIONS

http://bit.ly/2DCTwne
https://twitter.com/idvoretskyi
https://soundcloud.com/thenewstackmakers/strengthening-the-kubernetes-core-for-improved-operations
https://soundcloud.com/thenewstackmakers/strengthening-the-kubernetes-core-for-improved-operations

34Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES
DEPLOYMENT PATTERNS
by JANAKIRAM MSV

T
he rapid growth of Kubernetes in the container ecosystem has
led to multiple deployment models, ranging from do-it-yourself
to completely automated and managed forms of clusters.

Irrespective of how it is deployed, developers and operations teams
follow a standardized, consistent workflow for managing the application
life cycle of containerized applications. This is one of the key advantages
of Kubernetes.

Customers considering Kubernetes have access to a wide spectrum of
deployment models, available in the form of developer-friendly Platform
as a Service (PaaS) environments to highly customized deployments
running on bare metal servers. Each model has its own advantages and
disadvantages. We learned in the previous chapter — What the Data Says
About Kubernetes Deployments — for example, that storage was the
biggest challenge for organizations that exclusively deploy containers to
on-premises servers, while those that deploy solely to the cloud cite
monitoring and logging as their biggest challenge.

This chapter attempts to highlight various deployment patterns employed

http://www.thenewstack.io
https://thenewstack.io/author/janakiram/

35Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

by Kubernetes users. The objective is to help organizations understand
the options for deployment, the challenges and considerations associated
with each, as well as the management models for running production
workloads in Kubernetes.

Keep in mind that security is an important aspect of any Kubernetes
deployment and should be considered from the start when assessing
various deployment patterns. Chapter 3 takes an in-depth look at
security considerations from the perspective of containers, the
Kubernetes deployment itself and network security. Such a holistic
approach is needed to ensure that containers are deployed securely and
that the attack surface is minimized. Although many security practices
are still evolving, the next chapter reviews current best practices which
apply broadly to any Kubernetes deployment, whether you’re self-hosting
a cluster or employing a managed service.

Key Elements of a Kubernetes Cluster
Running in Production
Before exploring various options available for running containerized
workloads in production, let’s take a closer look at the stack.

Apart from Kubernetes, there are multiple components that are critical to
a production cluster. An image registry and a robust monitoring and
logging tool, for example, are components that ensure higher availability
of the workloads.

This section introduces the core components of a production stack that
runs mission-critical, containerized workloads.

Core Infrastructure: This acts as the foundation for the Kubernetes
cluster and the containerized workload by exposing the compute,
networking and storage infrastructure. The core infrastructure may be

http://www.thenewstack.io

36Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

based on bare metal servers, a virtualized data center, private cloud or
public cloud Infrastructure as a Service (IaaS).

Overlay Network: A Kubernetes cluster depends on a software-defined
networking layer for internal communication. This overlay network
enables all the components running within the cluster to talk to each
other. Customers can choose from Calico, Flannel, Romana and Weave
Net, among other networking options.

Storage: To run stateful workloads such as databases, a software-defined
storage layer should be available to the Kubernetes cluster. This storage
layer will be exposed to the containers as persistent volumes. Distributed
storage software such as Gluster, Network File Systems (NFS) and block
storage volumes are the preferred choices.

Key Elements of a Kubernetes Cluster
Running in Production

Source: Janakiram MSV

Load Balancer

Containerized Workloads

Kubernetes Execution Environment

Kubernetes Control Plane

Overlay Network

Core Infrastructure
(Physical / Virtual / Public Cloud / Private Cloud)

Storage

Distributed Key-Value
Database

Artifact Repository Build Automation

Image
Registry

Pr
ov

is
io

ni
ng

 &
C

on
fi

gu
ra

tio
n

M
gm

t.

M
on

ito
ri

ng

Lo
gg

in
g

Release Automation

FIG 2.1: The production stack running containerized workloads in a Kubernetes
environment contains multiple critical components.

http://www.thenewstack.io

37Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

Kubernetes Control Plane: This layer runs the master nodes of
Kubernetes that are responsible for the scheduling and orchestration of
workloads. The master nodes that expose the control plane application
programming interface (API) are configured for high availability to ensure
maximum uptime of the cluster.

Distributed Key-Value Database: A Kubernetes cluster depends on a
distributed database to maintain a single source of truth. This database
maintains the current state of the cluster and deployed workloads. Since
this database is critical for the health of the cluster, it is typically
configured for redundancy and higher availability. The open source
project from CoreOS, etcd, is used as the distributed key-value database.

Kubernetes Execution Environment: This layer consists of a set of
worker nodes that act as the workhorses of the cluster. When a workload
is deployed to Kubernetes, the master node makes scheduling decisions
based on certain parameters such as node utilization. It allocates one of
the available nodes to run the job. Since this layer is directly responsible
for the availability and scalability of applications, it needs to be elastic.
The worker nodes are configured to auto-scale in order to grow and shrink
the cluster dynamically.

Containerized Workloads: These are the applications that are deployed
within the Kubernetes cluster. A subset of the workload is exposed to the
outside world to access the user interface and API layers of the application.

Provisioning and Configuration Management: Installing and
configuring a Kubernetes cluster is not very different from deploying a
highly available, mission-critical, distributed application. To ensure
consistency and repeatability, customers often rely on toolchains such as
Ansible, Chef, Puppet, Terraform and other automation tools. These tools
make it easier to upgrade, patch and maintain Kubernetes infrastructure.

http://www.thenewstack.io
http://bit.ly/2uJMGYG
http://bit.ly/2pxydLh
http://bit.ly/2k6mjaO

38Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

Image Registry: Before running the applications, Kubernetes nodes
pull the corresponding container images from a registry. In
environments where new images are automatically built each time the
code is committed, the applications are upgraded to run the latest
version of the image. To reduce latency and to increase security, images
are stored in a registry that is co-located with the cluster. This
architecture ensures that the later version of images are always available
to the Kubernetes cluster.

Logging and Monitoring: Distributed applications generate a lot of logs,
and Kubernetes is not an exception. Every component of the cluster,
including the deployed application, emit logs that need to be captured
and processed. The logs are useful for debugging problems and
monitoring cluster activity. Logs, when combined with monitoring tools,
provide rich insights into the state of a cluster. Tools such as those in the
Elastic Stack (Elasticsearch, Logstash and Kibana), Grafana and
Prometheus are used for logging and monitoring. This layer is an essential
part of production deployments.

Load Balancer: The load balancer plays an important role in exposing
two endpoints to the outside world: the control plane API and public-
facing applications. Because the control plane is run across multiple
master nodes, the API is accessed via a load balancer. Similarly, the API
endpoints and web frontends of applications need a load balancer to
become accessible to the users.

Artifact Repository: An artifact repository maintains the assets that
belong to an application. As the complexity of distributed applications
grows, there is a need to maintain various configuration settings,
dependencies, packages, scripts and even binaries. In some cases, the
artifact repository also doubles as a container registry.

http://www.thenewstack.io

39Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

Build and Release Management: With continuous integration and
delivery becoming the preferred mechanism for application lifecycle
management (ALM), build and release automation is becoming key. These
tools connect the dots between source code management systems and
production environments through an efficient pipeline. Atlassian Bamboo,
CloudBees Jenkins and Shippable are some of the tools used for
automated build and release management.

Depending on the deployment pattern, the ownership of these layers
might shift to the platform provider or it may lie with the customer. We will
explore the aspect of shared responsibility where the infrastructure is
jointly managed by customers and the providers in the following sections.

Custom, Self-Hosted Kubernetes
Kubernetes is one of the most successful open source projects of the
recent past. Under the supervision of the Cloud Native Computing
Foundation (CNCF), the project enjoys contributions from skilled and
passionate developers working at CoreOS, Google, Huawei, IBM, Red Hat
and ZTE, among other companies. The source code is of high quality; it
goes through a rigorous evaluation from the community. The upstream
codebase available in the GitHub repo is used for deploying production
Kubernetes clusters. The stock Kubernetes code is used by many users
and third-party tools to run production-grade clusters. Still, complexity of
implementation is among the the top reasons organizations cited for not
using Kubernetes, according to the CNCF’s fall 2017 survey and The New
Stack’s May 2017 Kubernetes User Experience Survey.

As Kubernetes matures, there is a great emphasis from the community on
simplifying the installation. Though the initial versions of the software
were complex to install, the addition of tools such as Kubeadm have made
it easier for an average system administrator to deploy Kubernetes.

http://www.thenewstack.io
http://bit.ly/2quBaL4
http://bit.ly/2quBaL4
http://bit.ly/2uJMGYG
http://bit.ly/2x5VLZD
http://red.ht/2uJGuQo

40Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

Kubeadm simplifies deploying a cluster by automating the configuration
of control plane and the execution environments. It is available as native
packages on CentOS, Ubuntu and other mainstream Linux distributions.

The availability of tools such as Cloud Foundry Container Runtime,
Canonical conjure-up and kops have also made Kubernetes deployment
simpler across data center and public cloud environments.

Access to high-quality code maintained by the community combined
with the emerging set of installation tools is prompting customers to go
for a custom deployment of Kubernetes clusters. Users can deploy
Kubernetes in an enterprise data center running physical servers; on
virtual machines; and in private cloud, public cloud and hybrid cloud
environments. The setup, configuration and deployment experience can
vary based on the choice of tools.

When to Opt for Custom Deployment?
A custom deployment offers ultimate choice to customers. They can
choose from a broad range of target deployment environments, machine
configurations, operating systems, storage backends, network plugins
and high-availability configurations. While it delivers choice and control,
the responsibility of maintaining the clusters lies solely with the
customer.

In custom deployments, customers own the entire stack powering the
production cluster. From underlying compute, network and storage
resources to the image registry, the user is responsible for the installation,
configuration and management of the entire stack.

In the case of public cloud, some of the resources, such as virtual
machines (VMs) and block storage devices, are managed by the IaaS
provider.

http://www.thenewstack.io
https://cloudfoundry.org/cloud-foundry-launches-container-runtime-default-container-deployment-method-cloud-foundry-using-kubernetes-bosh/
https://kubernetes.io/docs/getting-started-guides/ubuntu/
https://github.com/kubernetes/kops

41Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

Organizations that need high customization in terms of operating
systems, storage backends and overlay networks choose custom, self-
hosted deployments. This approach also provides access to some of the
cutting-edge features that may not be available in other deployment
models.

Custom deployments are the cheapest option since the customers
would only have to invest in the infrastructure. Almost all the tools are
open source and freely available from the community. But the
organization has to account for the staffing and support costs involved
in maintaining the infrastructure.

The Kubernetes community frequently ships newer versions that improve
the stability and security of the platform. Upgrading custom deployments

Custom Deployment of Kubernetes Cluster,
Entirely Managed by Users

Source: Janakiram MSV

Load Balancer

Containerized Workloads

Kubernetes Execution Environment

Kubernetes Control Plane

Overlay Network

Core Infrastructure
(Physical / Virtual / Public Cloud / Private Cloud)

Storage

Distributed Key-Value
Database

Artifact Repository Build Automation

Image
Registry

Pr
ov

is
io

ni
ng

 &
C

on
fi

gu
ra

tio
n

M
gm

t.

M
on

ito
ri

ng

Lo
gg

in
g

Release Automation

User managed Vendor managed

FIG 2.2: All components running the production stack are maintained by users in a
custom, self-hosted deployment.

http://www.thenewstack.io

42Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

to the latest version with minimal downtime demands advanced
Kubernetes administration skills.

Since the container images need to be kept close to the cluster, customers
running self-hosted Kubernetes deployments will have to set up and
manage their own private registry.

If control is the primary criterion, organizations may go for custom
deployments.

Bare Metal Servers
Kubernetes can be deployed on bare metal servers running one of the
following Linux distributions:

• CentOS 6.

FIG 2.3: Nearly three-quarters of users deploy a community-supported Kubernetes
distribution

Types of Distributions Used

Source: The New Stack 2017 Kubernetes User Experience Survey.
Q. What types of distributions are being used? (multiple responses allowed) n=173.

% of Respondents Using Each Type of Distribution

(including those using multiple)

Custom build
(write-in response)

Vendor distribution
without value-added software

(e.g., Heptio, RackN)

Vendor distribution
with valued-added software

Platform distribution

Community supported 74%

27%

16%

4%

3%

45% uses a vendor-provided
solution (responses overlap,
so percentage total is greater)

http://www.thenewstack.io

43Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

• Fedora 25/26.

• RHEL 7.

• Ubuntu 16.04.

Kubeadm, the tool for setting up the cluster from the ground up, can be
used to target bare metal installations. It’s the preferred tool to quickly
install production-grade Kubernetes clusters in both bare metal and
virtualized environments. As of December 2017, kubeadm is still in beta
but stable enough to deploy production clusters. The implementation of
the tool may change slightly in the future to support easier upgrades and
high availability of clusters.

For customers running Ubuntu 16.04 or above, Canonical’s tool,
conjure-up, can automate the deployment. The same tool can be used for
targeting Amazon Web Services (AWS), Azure, Google Compute Engine
(GCE), Joyent, OpenStack and VMware environments.

There are Ansible Playbooks built on top of kubeadm, which automate the
deployment of a multi-node Kubernetes cluster.

CoreOS has a deployment tool based on Terraform to deploy Kubernetes
on bare metal. It installs Tectonic, the commercial distribution of
Kubernetes from CoreOS.

Virtual Machines and Private Cloud
Kubernetes can be set up on individual VMs running on a hypervisor or in
private cloud environments based on CloudStack, OpenStack and vSphere.

Kubernetes-anywhere is a tool customized for OpenStack and VMware
environments. The tool creates an open virtual machine format (OVF)
template that is used to bootstrap the cluster. VMware customers can also
use Photon Controller to deploy Kubernetes.

http://www.thenewstack.io
https://kubernetes.io/docs/reference/generated/kubeadm/
https://kubernetes.io/docs/getting-started-guides/ubuntu/
https://github.com/kubernetes/contrib/tree/master/ansible
https://coreos.com/tectonic/docs/latest/install/bare-metal/metal-terraform.html#automated-provisioning
http://bit.ly/2rbYAaF
https://www.vmware.com/products/vsphere.html
https://github.com/kubernetes/kubernetes-anywhere
https://vmware.github.io/photon-controller/

44Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

Kubernetes-anywhere can also be used to launch clusters in an
OpenStack environment running Keystone v3, Neutron with Load Balancer
as a Service (LBaaS) v2 and Nova.

Public Cloud
Kubernetes is often deployed in IaaS platforms such as Amazon EC2,
Azure VMs and Google Compute Engine. There are custom tools that
target specific public cloud environments.

Kops is a popular open source project that has become the official tool for
deploying Kubernetes in AWS. It supports a variety of options including
the ability to deploy a highly available cluster spread across multiple
availability zones. Though AWS is the primary cloud platform, support for
GCE and VMware vSphere is in alpha.

Conjure-up is a preferred tool for deploying Kubernetes Core of The
Canonical Distribution of Kubernetes in AWS, Azure, CloudSigma, Google
and Joyent. Canonical partnered with Google to optimize deployment on
Ubuntu VMs running in GCE.

Kubespray can be used in the cloud as well as on bare metal. Based on
Ansible, Kubespray is a collection of playbooks targeting a variety of
operating systems and deployment environments. It supports
mainstream Linux distributions and comes with a composable network
architecture. Customers can choose from Calico, Canal, Flannel and
Weave, among other network plugins.

Cloud Foundry Container Runtime is a recent addition to the supported
tools to deploy Kubernetes using the popular BOSH toolchain. It is tightly
integrated with Cloud Foundry PaaS where the Application Runtime
delivers a consistent and familiar experience to existing Cloud Foundry
developers. Cloud Foundry customers use this tool to deploy Kubernetes
as the underlying container platform for the PaaS.

http://www.thenewstack.io
https://github.com/kubernetes/kops
https://kubernetes.io/docs/getting-started-guides/ubuntu/
https://github.com/kubernetes-incubator/kubespray
https://cloudfoundry.org/cloud-foundry-launches-container-runtime-default-container-deployment-method-cloud-foundry-using-kubernetes-bosh/
http://bit.ly/2ESwPrk

45Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

Key Takeaway: Choose a self-hosted, custom deployment when you
want absolute control over the entire stack. This option demands skilled
DevOps teams familiar with installation and maintenance of a Kubernetes
cluster in production.

Managed Kubernetes Clusters
Customers who want to run Kubernetes within their data center or public
cloud environments without installing or maintaining the clusters opt for
managed Kubernetes offerings.

Vendors delivering managed Kubernetes services charge customers for
the management and maintenance of clusters. Customers will have to
spend on the core infrastructure along with the subscription or license fee,
charged separately by the managed Kubernetes vendor.

In this environment, a third-party vendor maintains the cluster remotely to
ensure the health of the environment. The cluster will be periodically
upgraded to the most recent version of Kubernetes with minimal
disruption to the workload.

In November 2017, the CNCF announced the Certified Kubernetes
Conformance Program certification which recognizes the platforms that
support the required APIs. This certification guarantees portability and
interoperability across multiple Kubernetes offerings.

When to Opt for a Managed Kubernetes
Deployment?
Managed Kubernetes platforms offer the best of both worlds — the choice
of infrastructure combined with maintenance-free clusters. Organizations
that do not have the required skills to set up, configure and manage large-
scale deployments can opt for managed Kubernetes platforms.

http://www.thenewstack.io
http://bit.ly/2quBaL4
https://www.cncf.io/certification/software-conformance/
https://www.cncf.io/certification/software-conformance/

46Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

Production Clusters Maintained by
Managed Kubernetes Providers

Source: Janakiram MSV

Load Balancer

Containerized Workloads

Kubernetes Execution Environment

Kubernetes Control Plane

Overlay Network

Core Infrastructure
(Physical / Virtual / Public Cloud / Private Cloud)

Storage

Distributed Key-Value
Database

Artifact Repository Build Automation

Image
Registry

Pr
ov

is
io

ni
ng

 &
C

on
fi

gu
ra

tio
n

M
gm

t.

M
on

ito
ri

ng

Lo
gg

in
g

Release Automation

User managed Vendor managed

FIG 2.4: In managed Kubernetes clusters, only the core orchestration engine is
managed by the vendors.

Since the platform vendors remotely manage the clusters, users can
focus on the application development instead of maintaining the
container infrastructure.

Many managed Kubernetes providers, however, do not have an
integrated container registry. It is the customer’s responsibility to set up
and manage a private container registry.

When compared to self-hosted deployments, managed Kubernetes
offerings are more expensive. Customers will have to factor in the
infrastructure cost along with the cluster management cost. But the
advantage of periodic upgrades, patching, security and monitoring
services of managed Kubernetes platforms can offset the cost in the
long term.

http://www.thenewstack.io

47Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

Customers can choose from some of the managed Kubernetes platforms,
listed below.

Giant Swarm
Giant Swarm is a managed Kubernetes offering available on AWS and
on-premises infrastructures. Unlike other implementations, Giant Swarm
provides full administrator rights to the cluster through its APIs.

IBM Cloud Private
IBM offers a flavor of its cloud platform called IBM Cloud Private that can
run within enterprise data centers. IBM Cloud Private is positioned as an
application platform for developing and managing on-premises,
containerized applications. It comes with an integrated environment for
managing containers based on Kubernetes, a private image repository, a
management console and monitoring frameworks. The stack has
multiple other components that are originally available in IBM’s public
cloud.

Madcore
Madcore attempts to bring managed Kubernetes platforms and deep
learning platforms together. The unique differentiator for this offering is
the built-in support for Spark and associated deep learning tools within
the Kubernetes cluster. Madcore is available only on AWS.

Platform9 Managed Kubernetes
Platform9 Managed Kubernetes is a Software as a Service (SaaS)-based
managed solution which is infrastructure agnostic and can work across
multiple public clouds and on-premises data centers. Based on its
legacy of managing OpenStack, Platform9 delivers a single control
plane to manage both environments. The service comes with features
such as single-sign-on integration, support for block storage and a
simple user interface.

http://www.thenewstack.io
https://giantswarm.io/
https://www.ibm.com/cloud-computing/products/ibm-cloud-private/
https://madcore.ai/
https://platform9.com/managed-kubernetes/

48Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

StackPoint
StackPointCloud claims to deploy and manage a Kubernetes cluster to the
cloud provider in three steps using a web-based interface. The service
supports AWS, DigitalOcean, Google Cloud Platform and Microsoft Azure.
The platform supports HA deployments with single-click upgrades. It has
a marketplace of curated applications packaged to run on Kubernetes.
Customers can also configure federated clusters to connect clusters
running in different environments.

Tectonic
CoreOS — acquired by Red Hat in 2018 — offers a commercial, managed
Kubernetes platform packaged as Tectonic. It can be installed in AWS,
Azure, VMware and bare metal environments. Tectonic is tightly integrated
with Container Linux, a lightweight, container-optimized Linux
distribution, along with some of the extensions from CoreOS such as
operators. CoreOS claims that the core components of the cluster — from
Container Linux to etcd to Kubernetes — can be self-maintained without
need for manual intervention. Tectonic comes with identity management
that works with Lightweight Directory Access Protocol (LDAP) and Security
Assertion Markup Language (SAML), along with enterprise governance
features for fine-grained control.

Key Takeaway: Managed Kubernetes deployments offer the best of both
worlds: Service Level Agreement (SLA)-driven managed clusters running
within a controlled environment. Organizations that opt for this model
own other essential components of a production stack.

Kubernetes as CaaS
In the early days of IaaS, virtual machines were the fundamental unit of
deployment. The entire compute fabric, which is the foundation of IaaS, is

http://www.thenewstack.io
https://stackpoint.io/
http://bit.ly/2uJMGYG
https://coreos.com/tectonic/

49Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

based on hypervisors and VMs. Containers matured rapidly to become an
alternative to VMs in the public cloud. Though they still run on VMs,
customers wanted an easy mechanism to deploy, scale and manage
containerized workloads. This led to a new cloud service delivery model
where container management platforms are offered as a service, which is
called Containers as a Service or CaaS.

Kubernetes evolved as the orchestration engine of choice for the public
cloud providers. The distributed and scale-out architecture is well suited
to run on IaaS. Similar to other managed services based on open source
technologies, such as Hadoop and Spark, Kubernetes became available
as a container management service in the public cloud.

Most of the cloud providers expose Kubernetes worker nodes while
managing the master servers themselves. This enables high availability
and scale-out features to the clusters. The rapid provisioning of clusters
with a few clicks is appealing to users.

Cloud providers offering CaaS may also include services such as secure
private registry, ingress, container-optimized operating systems, auto-
scaling of nodes and other features. This suite of services helps customers
not only deploy containerized applications but also manage the life cycle.

When to Opt for Containers as a Service?
When compared to other deployment models, CaaS provides the shortest
path to Kubernetes. Customers can have a fully configured, highly
available, secure cluster in just a few minutes.

CaaS comes with features such as integrated monitoring, logging, auto-
scaling, auto-upgradation and self healing. These out-of-the-box
capabilities free the DevOps teams from managing the clusters, which
results in long-term savings on infrastructure management.

http://www.thenewstack.io

50Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS
Hosted Kubernetes Delivered via

Containers as a Service (CaaS) Providers

Source: Janakiram MSV

Load Balancer

Containerized Workloads

Kubernetes Execution Environment

Kubernetes Control Plane

Overlay Network

Core Infrastructure
(Physical / Virtual / Public Cloud / Private Cloud)

Storage

Distributed Key-Value
Database

Artifact Repository Build Automation

Image
Registry

Pr
ov

is
io

ni
ng

 &
C

on
fi

gu
ra

tio
n

M
gm

t.

M
on

ito
ri

ng

Lo
gg

in
g

Release Automation

User managed Vendor managed

FIG 2.5: CaaS offerings manage the Kubernetes cluster along with the core
infrastructure.

With the heavy lifting moved to the cloud, users can focus on application
deployment and management. The tight integration with the load
balancers, firewalls, storage backends and container registry makes CaaS
a compelling choice for public cloud users.

The DevOps toolchain, consisting of source code management, build
automation, release management and artifact repositories, can be
seamlessly integrated with CaaS. In most cases, the DevOps services are
also exposed by the cloud provider.

The flipside of CaaS is lack of control. Cloud providers may take more
time to upgrade Kubernetes versions. They may not support all the
add-ons and features. Customers cannot choose the storage backend.
Most of the CaaS providers charge for both the VMs running the cluster

http://www.thenewstack.io

51Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

and the node management services, which makes CaaS more expensive
than other models.

Customers can choose from some of the following CaaS offerings in the
public cloud:

Alibaba Cloud Container Service
The Chinese cloud provider, Alibaba Cloud (formerly Aliyun) has a
managed Kubernetes CaaS offering, Alibaba Cloud Container Service.
Though the service has tight integration with other components of Alibaba
Cloud, lack of a private registry comes across as a limitation.

Amazon Elastic Container Service for
Kubernetes (EKS)
At AWS re:Invent 2017, Amazon announced Amazon Elastic Container
Service for Kubernetes (EKS), a managed Kubernetes service that runs on
top of Amazon EC2. The service complements its existing container
management platform available as ECS. EKS is tightly integrated with
Amazon Virtual Private Cloud (VPC) for networking; Identity and Access
Management (IAM) for authentication and authorization; Amazon Elastic
Block Store (EBS) for storage; and Elastic Load Balancing (ELB) and AWS
CloudTrail for logging. Amazon EKS provides a scalable and highly-
available control plane that runs across multiple availability zones. The
service automatically manages the availability and scalability of the
Kubernetes masters and the etcd persistence layer for each cluster. It runs
three Kubernetes masters across three Availability Zones in order to
ensure high availability, and it automatically detects and replaces
unhealthy masters.

Apprenda
Apprenda started as an enterprise PaaS company with a heavy focus on
.NET and Java-based line-of-business applications. Like most of its

http://www.thenewstack.io
https://www.alibabacloud.com/product/container-service?spm=a3c0i.7939108.209577.5.392f73cbe6vdoZ
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/

52Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

competitors, Apprenda has started to integrate its platform with
Kubernetes. Its latest offering, Apprenda Cloud Platform (ACP), aims to
bridge the gap between legacy applications written in .NET and Java
with the contemporary cloud-native applications. Apart from the
container management offering, Apprenda has commercial support
packages for open source Kubernetes.

Azure Container Service (AKS)
Microsoft recently introduced a managed Kubernetes service as part of its
container management platform, called Azure Container Service (AKCS),
which includes other orchestration engines such as Docker Swarm and
Mesosphere DC/OS. AKS is a flavor of ACS that delivers managed
Kubernetes as a Service. The key differentiator of AKS when compared to
other offerings is the pricing model. Microsoft only charges for the virtual
machines running the Kubernetes nodes with no additional cost of
running and managing the master nodes. Microsoft also has a managed
container registry that complements AKS.

Google Kubernetes Engine (GKE)
As the original developer of Kubernetes, Google was one of the first to
offer Kubernetes-based CaaS on its cloud platform. Branded as Google
Kubernetes Engine (GKE), the service is built on top of existing Google
Cloud Platform (GCP) components such as Compute Engine, Cloud Load
Balancing, Persistent Disk and Virtual Private Cloud (VPC) . The service is
backed by a service level agreement which ensures high availability. GKE
is one of the first CaaS platforms to get upgraded to the latest version of
Kubernetes. GCP comes with a private container registry in the form of
Google Container Registry.

Huawei Cloud Container Engine
Another Chinese company, Huawei, also has a managed Kubernetes
service known as Cloud Container Engine. This cloud platform doesn’t

http://www.thenewstack.io
https://apprenda.com/platform/
http://bit.ly/2h30eoP
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
http://bit.ly/2x5VLZD
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/container-registry/
http://www.huaweicloud.com/en-us/product/cce.html

53Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

include a managed container registry.

IBM Cloud Container Service
IBM Cloud Container Service is based on Docker and Kubernetes. It is
tightly integrated with the DevOps toolchain available on IBM Cloud
including the container registry. Apart from offering Kubernetes in the
public cloud, IBM’s private PaaS is built on top of Kubernetes.

Pivotal Container Service (PKS)
Pivotal partnered with VMware and Google to build Pivotal Container
Service (PKS), a CaaS layer that runs on top of VMware vSphere and Google
Cloud Platform. PKS deploys a highly-available Kubernetes cluster with
built-in support for monitoring, analytics and automated health checks. It
is tightly integrated with VMware tools like vRealize Operations Manager,
vSAN network storage, and Wavefront monitoring and analytics for a full-
featured, on-premises deployment. Customers using GKE can easily move
workloads to and from PKS. The service is aimed at VMware customers
considering running containerized workloads in hybrid environments.

Key Takeaway: CaaS delivers everything customers need to run
Kubernetes in production; however, it is less flexible in terms of choosing
custom network and storage backends.

Kubernetes as PaaS
Platform as a Service (PaaS) started as a polyglot, multi-tenant
environment to run applications in isolated context. Early PaaS
implementations were based on proprietary technologies for isolating the
application context. When Docker became available as an open source
containerization technology, PaaS providers replaced the proprietary
execution environments with containers. Today, most of the PaaS
offerings are layered on containers.

http://www.thenewstack.io
https://www.ibm.com/cloud/container-service
https://pivotal.io/platform/pivotal-container-service
https://pivotal.io/platform/pivotal-container-service

54Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

While code packaged as containers still runs in VMs or bare metal servers,
Kubernetes has become the de facto orchestration engine that manages
the containers. The PaaS layer is built on top of Kubernetes to deliver
end-to-end application life cycle management services.

All the above discussed deployment models, such as self-hosted and
managed Kubernetes clusters, target administrators and DevOps teams.
Kubernetes-based PaaS is designed for developers so that they can bring
the source code to the platform instead of packaged artifacts such as
Docker images or Kubernetes pods. They do not need to deal with the
operational aspects of the platform. Instead, they squarely focus on the
code and the application life cycle.

PaaS can be deployed within public cloud environments or inside the
enterprise data center. Large organizations are adopting PaaS to run
internal applications as well as customer-facing applications. They want
the development teams to have a consistent experience irrespective of
the deployment target: private or public cloud. Kubernetes-based PaaS
offerings deliver this promise to enterprises through consistent workflow
and deployment patterns. In many cases, developers need not even know
that their code would be running inside a Kubernetes cluster. The PaaS
layer abstracts the underlying details of Kubernetes and exposes only the
API endpoints that developers understand.

Kubernetes has become the foundation of contemporary PaaS
implementations. Below is a partial list of PaaS offerings that are
integrated with Kubernetes.

When to Opt for Managed PaaS?
PaaS is developer-oriented, while other deployment models are
operations-oriented. If an organization is considering a uniform, consistent
layer that hides the complexity of container orchestration and

http://www.thenewstack.io

55Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

FIG 2.6: PaaS vendors deliver the entire application platform that manages the life
cycle of a workload.

Kubernetes-Based PaaS Designed to Deliver
End-to-End ALM Capabilities

Source: Janakiram MSV

Load Balancer

Containerized Workloads

Kubernetes Execution Environment

Kubernetes Control Plane

Overlay Network

Core Infrastructure
(Physical / Virtual / Public Cloud / Private Cloud)

Storage

Distributed Key-Value
Database

Artifact Repository Build Automation

Image
Registry

Pr
ov

is
io

ni
ng

 &
C

on
fi

gu
ra

tio
n

M
gm

t.

M
on

ito
ri

ng

Lo
gg

in
g

Release Automation

User managed Vendor managed

infrastructure management, they choose PaaS.

When DevOps and ALM tools are layered on top of Kubernetes
orchestration, it turns into a container PaaS. Developers will not have to
deal with packaging the code for containers as the platform includes
tools to convert source code into images. Developers need not
understand how to configure the service discovery for exposing internal
and external services since the platform handles the connectivity
between stateless and stateful services. Scaling, healing, monitoring and
logging are built into the platform, which are configurable through APIs
or web-based consoles.

Organizations that are looking for end-to-end platforms that deliver consistent
developer experience and advanced ALM capabilities opt for PaaS. These

http://www.thenewstack.io

56Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

offerings reduce the cost of owning and managing certain DevOps tools.

Though PaaS reduces the complexity, it lacks flexibility. Lack of
customization is one of the limitations of these platforms. When
compared to other delivery models, the PaaS licensing model makes it
slightly expensive for users.

Hasura
Hasura.io is a Backend as a Service (BaaS) offering targeting modern web
and mobile developers. It has authentication, data and file services APIs
built on top of Kubernetes. Developers can use a command-line interface
(CLI) to push their source code hosted in GitHub to Hasura’s PaaS. The
platform is built from the ground up on Kubernetes hosted on
DigitalOcean. This PaaS/BaaS is ideal for startups and developers looking
for rapid development and deployment.

Mesosphere DC/OS
Mesosphere’s DC/OS is an open source distributed computing platform for
running highly scalable workloads. To attract developers, Mesosphere
initially added a PaaS layer to DC/OS called Marathon. Recently,
Kubernetes is integrated with DC/OS to become an orchestration engine
for containerized applications. It complements Marathon in delivering a
fully-fledged platform experience to developers. Mesosphere promises to
bridge the gap between stateful services, such as Hadoop and Spark, and
stateless applications modeled around 12-factor apps.

Red Hat OpenShift
Red Hat OpenShift is one of the first platforms to fully adopt Kubernetes.
This PaaS offering is available as an open source project (OpenShift
Origin), hosted platform in the public cloud (OpenShift Online) and as an
enterprise private PaaS (OpenShift Container Platform). Red Hat built
OpenShift on top of its proven open source technology stack.

http://www.thenewstack.io
https://hasura.io/
https://mesosphere.com/product/
https://www.openshift.com

57Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

Types of Kubernetes Deployments
Features Self-Hosted,

Custom
Deployment

Managed
Kubernetes
Cluster

Containers-as-a-
Service (CaaS)

Platform-as-a-
Service (PaaS)

Ability to customize ¿¿¿
High

¿¿
Medium/High

¿¿
Medium/Low

¿
Low

Overall costs (software
and infrastructure)

Ù Ù Ù
High

Ù Ù
Medium

Ù Ù Ù
High

Ù Ù Ù
High

Staffing and
support costs

Ù Ù Ù
High

Ù Ù
Medium

Ù
Low

Ù
Low

Administration
skills

¿¿¿
High

¿¿
Medium

¿
Low

¿
Low

Level of control ¿¿¿
High

¿¿
Medium

¿
Low

¿
Low

Container image
registry

)
Not included

) (
Varies by provider

(
Included

(
Included

Portability and
interoperability
across clouds

¿
Low

¿¿¿
High (on cloud
provider certified
distributions)

¿¿¿
Varies by provider

¿¿¿
Varies by provider

Built-in patching,
security and
monitoring services

)
Not included

(
Included

(
Included

(
Included

Built-in
high-availability
features

)
Not included

)
Not included

(
Included

(
Included

Built-in infrastructure
autoscaling (container
autoscaling always included)

)
Not included

)
Not included

(
Included

(
Included

Rapid provisioning
features

)
Not included

)
Not included

(
Included

(
Included

Complete application
lifecycle
management

)
Not included

)
Not included

)
Not included

(
Included

TABLE 2.1: This table compares the varying levels of control, costs and features to
expect from each deployment pattern.

http://www.thenewstack.io

58Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

OpenShift comes with an application lifecycle management (ALM) tool
that automates the entire deployment pipeline. Developers bring their
source code to the platform which will be packaged as a container image
and deployed within Kubernetes. OpenShift is integrated with DevOps
tools such as Ansible, Git and Jenkins.

Key Takeaway: PaaS completely hides the complexity involved in setting
up and managing the entire stack in production environments. The ALM
tools available in PaaS make the platform developer-friendly.

Emerging Deployment Patterns
As Kubernetes matures, the use cases go beyond mundane container
orchestration services. It is now being used in a variety of niche scenarios.

Here is a list of emerging patterns in which Kubernetes is utilized in
purpose-built platforms.

Edge Computing
Edge computing is an evolving technology where compute, storage and
networking are deployed closer to the data sources. The platform mimics
the cloud by exposing endpoints for ingesting data, storing and processing
and a dynamic rules engine. AWS Greengrass and Azure IoT Edge are
examples of edge computing platforms that act as an extension of the
public cloud. Containers are becoming an obvious choice to package and
deploy various elements at the edge. Since the edge computing
infrastructure consists of multiple resources that are collectively treated
as a cluster, Kubernetes can be used as the cluster manager and
orchestration engine. Most of the edge computing platforms support both
x64 and Advanced RISC Machine (ARM). Kubernetes support for these
architectures makes it an ideal choice for managing the cluster.

Public cloud vendors may eventually utilize Kubernetes to orchestrate the

http://www.thenewstack.io

59Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

containers deployed in the edge. The portal or management console may
provide the user experience to remotely manage the Kubernetes cluster.

Machine Learning
Machine learning (ML) is becoming one of the key components of public
cloud computing. To train ML models at scale, customers upload large
datasets to a centralized storage location and use a distributed
computing cluster based on graphics processing units (GPUs). Companies,
such as NVIDIA, are investing in container images that come with Compute
Unified Device Architecture (CUDA) libraries to take advantage of the GPU
resources. Multiple container images are launched in parallel to train
machine learning models. Data scientists create and test models with
smaller data sets in the local environment, package the algorithm into a
Docker image and use that to launch a few thousand containers to
perform large-scale training operations in the cloud. Since this scenario
demands orchestrating containers at scale, Kubernetes is becoming a
preferred platform for machine learning. Kubeflow is an open source
project from Google to run ML workloads on Kubernetes. It adds a
Tensorflow Custom Resource (CRD) that can be configured to use central
processing units (CPUs) or GPUs, and adjusted to the size of a cluster with
a single setting. CaaS environments, such as Google Kubernetes Engine
and Azure Container Service, are used in conjunction with hosted
machine learning platforms running on GPU-based compute resources.

Serverless Computing
Serverless computing is gaining popularity among developers. Along with
VMs and containers, serverless has become an essential compute service
offered by public cloud providers. Unlike other compute services,
serverless is event -driven, which means that the code will only be
executed when an external event is triggered. Developers upload code
snippets to the serverless platform in the form of functions. AWS Lambda,

http://www.thenewstack.io
https://github.com/google/kubeflow

60Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES DEPLOYMENT PATTERNS

Azure Functions, and Google Cloud Functions are some of the popular
serverless computing choices in the public cloud. Given the polyglot and
isolated nature of serverless, Docker can be used for serverless
computing. Kubernetes becomes the obvious choice for managing these
Docker containers at runtime. Apache OpenWhisk, Fission, Kubeless,
nuclio and OpenFaaS are some of the serverless environments based on
Kubernetes.

Stream Analytics
The rise of Internet of Things (IoT), multiplayer gaming, ad tech and social
media analysis has resulted in the need for analyzing the data in real time.
Technologies such as Apache Kafka and Apache Spark are used for
ingesting and analyzing the streaming data. The layers responsible for the
ingestion and real-time analytics have to scale rapidly and dynamically to
meet the demand. Kubernetes is used for scaling these workloads that
deal with stream analytics. The workloads take advantage of Kubernetes
primitives such as StatefulSets and the Horizontal Pod Autoscaler to
deliver the required scale. Iguazio is an example of a data platform built on
top of Kubernetes to run big data workloads, including stream analytics.

http://www.thenewstack.io
https://openwhisk.apache.org/
https://platform9.com/fission/
http://kubeless.io/
https://github.com/nuclio/nuclio
https://github.com/openfaas/faas
https://www.iguazio.com

61Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS 61

One of the most touted virtues of cloud-native
application deployment is that it aims to free the
software developer from having to worry about
the state of their infrastructure. Cloud-native

security is a service provided on behalf of the maintainer of the
cloud-native development space who, in more and more
enterprises, is someone in development. So how can cloud-native
architectures be easier to use while also placing more responsibility
on developers for delivering secure applications?

The New Stack correspondent Scott Fulton and Twistlock CTO
John Morello discuss why cloud native is the future of application
development and what makes it inherently more secure.

“One of the characteristics of containers is that they’re very
predictable, or they should be,” Morello said. “This allows you to do
security in a more predictable, automated way.” Listen on
SoundCloud.

John Morello is the chief technology officer at Twistlock. As CTO,
John leads the work with strategic customers and partners and
drives the product roadmap. Prior to Twistlock, John was the chief

information security officer of Albemarle, a Fortune 500 global chemical
company, and spent 14 years at Microsoft.

WHY CLOUD-NATIVE
ARCHITECTURES ARE
INHERENTLY MORE
SECURE

http://bit.ly/2sOzS1A
https://soundcloud.com/thenewstackmakers/why-cloud-native-architectures-are-inherently-more-secure
https://soundcloud.com/thenewstackmakers/why-cloud-native-architectures-are-inherently-more-secure
https://soundcloud.com/thenewstackmakers/why-cloud-native-architectures-are-inherently-more-secure

62Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY
PATTERNS
by CHENXI WANG

A
s an orchestration platform, Kubernetes impacts many runtime
security functions. These include authentication, authorization,
logging and resource isolation, as well as more advanced

implications such as workload placement and network segmentation.
Because of the orchestrator’s comprehensive reach in the container
runtime environment, Kubernetes security is a critical aspect to the
security posture of the container infrastructure. In this chapter, we will talk
about threat models and various security considerations for a Kubernetes
deployment and discuss best practices that organizations can follow.

Kubernetes Threat Models
To properly address security, we must first discuss the threat models. In
the Kubernetes environment, there are generally four types of threats that
apply regardless of the deployment model (with some edge case
exceptions):

1. External attacks aiming to compromise Kubernetes controls:
This threat exists for all connected systems. In the context of a

http://www.thenewstack.io
https://thenewstack.io/author/chenxi/

63Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

Kubernetes cluster, this represents attackers gaining access to the
system or compromising certain controls that will impact the security
of the system.

2. Compromised containers/nodes: If there are malicious
containers within the Kubernetes-controlled environment, or
malicious nodes within a cluster, what is the impact to the rest of
the nodes or the cluster? Can you effectively contain the “blast
radius” both on the node and within a cluster?

3. Compromised credentials: What happens when a Kubernetes
administrator’s credential is compromised? How much does that
affect the cluster?

4. Misuse of legitimate privileges: This could happen when systems
are misconfigured, controls are lacking or operations are not closely
monitored.

These different threats may result in a multitude of compromises and
undesirable scenarios, including elevation of privileges, exfiltration of
sensitive data, compromise of operations or breach of compliance policies.

One of the attack scenarios that has garnered a fair amount of attention is
the concern of “blast radius” — how much damage can a compromised
container do to other containers on the same node, or how much damage
can a compromised node do to the rest of the cluster? The discussions
henceforth in this chapter are motivated by these threat models as well as
the need to minimize “blast radius.”

External Attacks
In a Kubernetes environment, the components that are accessible
externally will be exposed to external attacks. Those components can
include the application programming interface (API) server, kubelet and

http://www.thenewstack.io

64Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

etcd. (The first ebook in this series, “The State of the Kubernetes
Ecosystem,” reviews the components in a Kubernetes node.)

To alleviate the threat of external attacks, ensure that only the necessary
Kubernetes services are exposed and no more. Always enforce
authentication and configure the right network security policies for any
exposed services.

Compromised Containers
Ultimately, Kubernetes manages workloads running in containers. If a
container is compromised, the concern is whether the container can
escalate privileges to take control of other containers or the cluster.

Kubernetes’ isolation mechanisms, such as namespaces or network
segmentation, as well as some of the built-in, OS-level controls regulating
what the container can access, can help limit the impact of compromised
containers. One other control users should pay attention to is the ability to
limit the number of containers that can run in a privileged mode — if a
privileged container is compromised, it will be able to do much more
harm than a normal container.

Compromised Credentials
When legitimate user credentials have been compromised, you may
have a malicious user in the system. It is critical, therefore, to properly
regulate and limit a user’s access to cluster resources and to closely
monitor user actions.

To reduce the impact of malicious users, you need to enforce least-privilege
access, role-based access control or other fine-grained access controls.

Misuse of Privileges
If the system is not configured correctly, it could lead to misuse of user
privileges. For instance, if network policies do not restrict access between

http://www.thenewstack.io
https://thenewstack.io/ebooks/kubernetes/state-of-kubernetes-ecosystem/
https://thenewstack.io/ebooks/kubernetes/state-of-kubernetes-ecosystem/

65Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

pods or namespaces, a user might be able to read traffic for other
namespaces that he or she should not have access to in the first place.

A major defense against misuse of privileges is proper hardening. Ensure
that all the system components, such as containers, pods, namespaces
and kubelets, are hardened to significantly reduce the possibility of
privilege misuse.

Another important defense is authorization control. Kubernetes supports
a plugin architecture, which allows sophisticated authorization logic to be
included. Design and implement authorization correctly; it’s one of the
most effective weapons against privilege misuses.

Kubernetes Threat Models at a Glance
Threat Cause Actions

External
attacks

API server, kubelet or
etcd components are
compromised.

Only expose the necessary Kubernetes services.

Always enforce authentication.

Configure the right network security policies for any exposed services.

Compromised
containers

A container escalates privilege
to take control of other
containers or the cluster.

Utilize Kubernetes’ isolation mechanisms, such as namespaces or
network segmentation.

Utilize built-in OS-level controls.

Limit the number of containers that can run in a privileged mode.

Compromised
credentials

A malicious user gains access
to the system.

Enforce least-privilege access, role-based access control or other fine-
grained access controls.

Misuse
of legitimate
privileges

The system is not configured
correctly and user privileges
are misused.

Ensure all system components are properly hardened.

Design and implement authorization correctly.

Utilize Kubernetes’ plugin architecture, which allows sophisticated
authorization logic.

TABLE 3.1: In the Kubernetes environment, there are generally four types of threats
that apply regardless of the deployment method.

http://www.thenewstack.io

66Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

Security Considerations for Kubernetes
With the threat model in mind, we explore Kubernetes security along four
major tenets: authentication and authorization; resource isolation;
hardening and network security; and logging and auditing. We look at
security from the perspective of containers, Kubernetes deployment itself
and network security. Such a holistic approach is needed to ensure that
containers are deployed securely and that the attack surface is minimized.
The best practices that arise from each of the above tenets apply to any
Kubernetes deployment, whether you’re self-hosting a cluster or
employing a managed service.

We should note that there are related security controls outside of
Kubernetes, such as the Secure Software Development Life Cycle (S-SDLC)
or security monitoring, that can help reduce the likelihood of attacks and
increase the defense posture. We strongly urge you to consider security
across the entire application life cycle rather than take a narrow focus on
the deployment of containers with Kubernetes. However, for the sake of
brevity, in this chapter we will only cover security controls within the
immediate Kubernetes environment.

Authentication and Authorization
The Kubernetes APIs are the central interfaces for administrators, users
and applications to operate and communicate in the Kubernetes
environment. Both users and service accounts can access Kubernetes
APIs to initiate operations. As such, controlling API access is the main task
of authentication and authorization within Kubernetes.

The Kubernetes platform has built-in authentication and authorization
controls, as well as admission controls, which intercept and regulate
requests to the Kubernetes APIs after authentication and authorization.
Admission controls include built-in constructs as well as webhook-

http://www.thenewstack.io

67Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

enabled methods that can be used to invoke external logic.

Authentication and authorization are at the core of Kubernetes security.
Securing access to the Kubernetes API server is therefore one of the first
priorities of a secure Kubernetes environment. Later in this chapter, we
will explore in-depth authentication and authorization options and
policies.

Resource Isolation
Isolation of resources is another major security lever within Kubernetes.
Isolation not only prevents denial-of-service attacks, but also provides
privacy and data protection. The Kubernetes platform provides isolation
mechanisms for a number of resource types, including pods and
namespaces. The resource limits you can place on pods and namespaces
include central processing unit (CPU) cycles, memory requests and
persistent storage space.

Hardening and Network Security
Environment hardening, including hardening of containers and the
underlying Kubernetes infrastructure, is essential to the security of a
Kubernetes environment. It helps defend against threats brought by
compromised containers, misuse and mis-configurations.

Hardening operations include restrictions on running privileged
containers, limiting privilege escalations and whether a container can
access the host networking interface and file system.

Network security handles segmentation, secures API access with
Transport Layer Security (TLS) client authentication and manages service
network Access Control Lists (ACLs).

Logging and Auditing
In addition to native application and system logging, it may be beneficial

http://www.thenewstack.io

68Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

to have Kubernetes-specific logs to understand Kubernetes operations,
such as who accessed which Kubernetes API.

Kubernetes 1.9 provides a beta feature — Audit Logging — to perform
separate logging and auditing functions. Audit Logging records actions
taken by the API. The records can then be archived for later analysis. An
administrator can specify which events should be logged by specifying an
audit-policy YAML file.

Container Security
Before we dive into the security aspects of Kubernetes, we must first
understand the relevant security issues with the container infrastructure.

Kubernetes supports Docker containers and, experimentally, the rkt
container format. For the rest of this chapter, all discussions on containers
center on Docker containers.

Node Security
To run containers in a secure fashion, each Linux node must be properly
configured and hardened. The Center for Internet Security (CIS)
benchmarks for Docker and a corresponding CIS benchmark for
Kubernetes contain many hardening guidelines that operational teams
should follow.

For instance, one of the recommended practices is to enable built-in
Linux security measures, such as SELinux and Seccomp profiles. SELinux
is a kernel-level capability that regulates access to files and network
resources, while Seccomp profiles restrict the set of system calls an
application can make. Together, these capabilities allow a level of fine-
grained control over the workloads that run on the node.

In general, major considerations of node security include:

http://www.thenewstack.io
https://www.cisecurity.org/cis-benchmarks/
http://man7.org/linux/man-pages/man8/selinux.8.html
http://man7.org/linux/man-pages/man2/seccomp.2.html

69Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

• Securing node communications with a TLS client certificate, to
ensure all critical API access points are secured with end-to-end TLS.

• Enabling relevant kernel-level security controls like SELinux or
Seccomp. These capabilities help to limit the attack surface on the
node, thereby giving greater control over security of the entire
system.

• Limiting direct access, e.g., Secure Shell (SSH) access, to Kubernetes
nodes: Forcing all access to nodes via Kubernetes ensures proper
access control and logging. This helps to reduce risk for unauthorized
access to host resources.

• Follow industry best practices, such as CIS Docker Benchmark, to
properly configure and harden the Linux nodes that run containers.

Container Image Security
The most important aspect of container image security is managing
vulnerabilities. Because running containers with vulnerabilities exposes
your system to attacks and compromises, you must actively manage
the images used in your system to discover and remove known
vulnerabilities.

A number of commercial and open source packages can perform
container image scanning to discover known Common Vulnerabilities and
Exposures (CVE) identifiers. The trick is not to stop at scanning. Rather, the
scanning function should be integrated with runtime enforcement and
remediation capabilities.

For runtime enforcement, consider a process that deploys only those
images that pass vulnerability scanning and those that adhere to the
organization’s hardening policies. Kubernetes provides mechanisms to
exercise such enforcement policies.

http://www.thenewstack.io

70Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

For remediation, ensure that the vulnerability scanning and security
assessment function is integrated with the organization’s continuous
integration/continuous deployment (CI/CD) pipeline. This way, the
scanning results are fed directly to the pipeline, thereby kicking off
remediation workflows before deployment. This should, in turn, be
integrated with Kubernetes’ rolling updates feature, ensuring vulnerable
containers are taken offline and replaced with freshly built images
without the known flaws.

Container Registry Management
Container registries are the source from which images come. You must
manage which registries can be used by your organization to pull images
because downloading images from unknown registries can lead to the
proliferation of vulnerable and dangerous software.

Use private registries and approved images; that is, only scanned and
vetted images can be pushed into your private registries. If you must use
public registries, scan the images before deployment. If the security
scanning process fails to clear the image, you must fail deployment as a
result. That is the only way to ensure the hygiene of your container
environment.

Deployment Security
In this section, we focus on the implementation of security functions for
each of the four major tenets of Kubernetes security: authentication and
authorization, resource isolation, network security and logging and
auditing. These may be implemented with built-in Kubernetes controls
and configuration options as well as the Kubernetes plugin
infrastructure that allows external policies to be instantiated for greater
levels of control.

http://www.thenewstack.io

71Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

User Authentication and Authorization
In Kubernetes, both users and service accounts can access Kubernetes
APIs. Each API request should be authenticated and authorized prior to
gaining access.

Unlike a normal user, service accounts are managed, bound to specific
namespaces and associated with credentials known as Secrets. As such,
the authentication and authorization processes for service accounts are
radically different than those for human users.

The Kubernetes authentication and authorization architecture is a layered
process. Depicted in Figure 3.1, this process invokes authenticator modules
first, before authorization modules, and finally the request is passed
through admission controls (if any), before it attains access to any objects.

FIG 3.1: A high-level depiction of how Authentication, Authorization, and Admission
Control modules are used to control API access in Kubernetes.

API Requests Are Authenticated and Authorized
With Three Kubernetes Modules

Source: https://kubernetes.io/docs/admin/accessing-the-api/

ACCOUNT

TYPES

KUBERNETES API SERVER NAMESPACES

#

Human
Users

ALLOW

ACCESS

¿

Service
Accounts

Authentication
Modules

Who
can access?

Service accounts
are managed,

bound to specific
namespaces.

1

Authorization
Modules

What
is accessible?

2

Objects
Admission
Controls

Granular access
control policy.

3

http://www.thenewstack.io

72Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

To enable authentication, the cluster administrator must configure the
API server to run one or more authentication modules at cluster
creation time.

User Authentication
The authentication operation in Kubernetes is accomplished via the use
of Authentication Modules, also known as authenticators (see Figure 3.1).
Kubernetes supports a variety of built-in authenticator modules to
authenticate an API request from a user.

Kubernetes authenticators allow the use of Client Certificates, Passwords,
Static Tokens, Bootstrap Tokens and JSON Web Tokens (JWT) for
authentication purposes. You can program additional authentication
logic by using an authentication proxy or the webhook method of
authentication.

If the administrator specifies multiple authenticators, they will be invoked
in sequence. The user is considered authenticated when one of the
modules returns a success result. If none of the modules are successful,
the server rejects the request with a 401 error code.

• Client Certificates: Passing the --client-ca-file=FILENAME to
the API server enables client certificate-based authentication. The
file referenced must contain information about the certification
authority to validate the certificate. If a client certificate is presented
and verified, use the common name of the subject as the user name
for the request.

• Static Tokens: Pass the --token-auth-file=FILENAME option on
the command line to tell the API server to use the static bearer token
authentication method. The file referenced must contain the actual
tokens.

http://www.thenewstack.io

73Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

• Passwords: Pass the --basic-auth-file=FILENAME option to the
API server to indicate the password authentication method. Note that
the use of static passwords is not considered a secure mode of
authentication. Also, at present, the password credentials cannot be
changed without restarting the API server.

• Bootstrap Tokens: Currently an alpha feature, Bootstrap Tokens are
stored as Secrets in the system namespace. The difference between a
Bootstrap Token and a static token is that the former is dynamically
created and managed. You can enable Bootstrap Token Authenticator
with the --experimental-bootstrap-token-auth flag.

One more authentication category worth noting is service account tokens,
which are JSON Web Tokens. A service account is usually attached to a
pod in the cluster. A service account token is mounted into the pod and its
presence allows the pod to access the API server. Note that users with
read access to pod secrets can read the token and authenticate to the API
server as the service account.

User Authorization
For user authorization, Kubernetes supports multiple authorization
modules such as Node, Attribute-Based Access Control (ABAC), Role-
Based Access Control (RBAC) and Webhook.

• Node: Node is a special-purpose authorization module that
specifically deals with API requests by kubelets. A Node authorizer
handles read, write and auth-related API operations.

• ABAC: An ABAC module assesses attributes of an access request
against an access control policy to grant or deny access.

• RBAC: RBAC controls access to Kubernetes API resources based on
the assigned role of the user.

http://www.thenewstack.io

74Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

• Webhook: In this context, Kubernetes uses Webhook to query an
external service on whether to grant or deny the current API request.
The webhook method provides a means for Kubernetes to incorporate
a third-party policy and potentially implement arbitrary logic for
authorization decisions.

For this discussion, we will focus on the authorizers that deal with user
actions. Readers who are interested in learning more about Node
Authorization, please refer to the Kubernetes documentation.

To use the authorization modules, an administrator must configure them
at the time of cluster creation. If multiple modules are configured, they are
linked together in a logical “OR” fashion for granting access — if any
module authorizes the request, the request can proceed. But only if all of
the modules deny the request, can the access request be denied.

Attribute-Based Access Control (ABAC)
For ABAC, attributes used for authorization may include user identity, user
group, namespace, resource name and API request verb (the action being
requested), among others. The ABAC policy is a JSON file, which must also
be specified at the time of cluster creation.

Below is a sample authorization policy for user Alice. The policy gives Alice
read permission to the namespace AccountInfo.

{

 “apiVersion”: “abac.authorization.kubernetes.io/

v1beta1”,

 “kind”: “Policy”,

 “spec”: {

 “user”: “Alice”,

 “namespace”: “AccountInfo”

http://www.thenewstack.io
https://kubernetes.io/docs/admin/authorization/node/

75Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

 “resource”: “pods”,

 “readonly”: true

 }

}

If Alice makes a request to read an object within the AccountInfo
namespace, the request will be granted as Alice has read access to the
namespace. In contrast, if Alice makes a write request to any object inside
the AccountInfo namespace, the request will be denied.

To enable ABAC authorization control, an administrator can start the API
server with the flag: --authorization-mode=ABAC. In addition, you
need to specify the authorization policy file by including this flag:

--authorization-policy-file=MyPolicyFile.json

Role-Based Access Control (RBAC)
A Kubernetes user role is similar to roles used in classic RBAC in that it
encapsulates a set of logically-grouped permissions. For instance, you can
create a role that has read access to a particular resource by combining
the request verbs “get,” “watch” and “list,” in a single role.

A role can be cluster wide, denoted as ClusterRole, which can be used
to grant access rights to resources across different namespaces in the
same cluster. Or, it can be applied to a single namespace, in which case it
is simply denoted as Role.

RBAC provides a mechanism for administrators to edit roles to efficiently
prevent unwanted privilege escalations. Below is an example role
definition:

kind: ClusterRole

apiVersion: rbac.authorization.k8s.io/v1

http://www.thenewstack.io

76Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

rules:

- apiGroups: [“”]

 resources: [“pods/log”]

 verbs: [“get”, “list”, “watch”]

- apiGroups: [“batch”]

 resources: [“jobs”]

 verbs: [“get”, “list”, “watch”, “create”, “update”,

“patch”, “delete”]

This cluster role can read resources pod logs in the core API group and
can read/write “jobs” in the batch API group. When a user with this cluster
role issues a request to read pod logs of the core API group, the request
will be granted.

To enable RBAC authorization control, an administrator can start the API
server with the flag:

--authorization-mode=RBAC

Webhook
As previously mentioned, the webhook authorization method allows
Kubernetes to query an external representational state transfer (REST)
service for authorization decisions. This method comes in handy when
there are specific policies for determining user privileges that cannot be
easily expressed with existing authorization controls. For instance, if
you wish to incorporate authorization logic that takes into account
dynamic context of the access, such as location of the machine that
initiated the request or the time of day, it is best to use a separate
authorization (AuthZ) function to implement this logic, which can be
invoked via Webhook.

To use Webhook, one needs to specify a configuration file, which

http://www.thenewstack.io

77Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

defines the remote AuthZ service, the certificate of the service and other
information necessary to access via webhook.

When a request subjected to a webhook authorizer comes in, the API
server will package up pertinent information about the request in a JSON
object and POST to the remote service, as specified in the config file. The
JSON file might include information such as the user identity, the group in
which the user belongs and the resource that the user is trying to access
(namespace, operation, etc.). The remote service will return a “true” or
“false” for the “allowed” field.

To enable the webhook method of authorization, an administrator can
start the API server with the flag:

--authorization-webhook-config-file=MyAuthZConfigurFile

Admission Control
After a request to the Kubernetes API server is authenticated and
authorized, but before the request is fully accepted, you can utilize
admission controllers to enable advanced features of access control.

Admission control is used to specify granular access control policies that
go beyond user identities, resources, operations and namespaces.
Rather, it is best used if you wish to define policies based on the specific
operational context of the container or the resources.

Admission control plugins must be compiled into the API server library
to take effect. If multiple plugins are defined, they will be run in
sequence. A request can only proceed when all the admission
controllers pass it. If any of the plugins reject the request, the access
request is rejected immediately.

To use admission controls, you must start the Kubernetes API server with
the flag of admission-control, which takes a comma-delimited,

http://www.thenewstack.io

78Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

ordered list of controller names. For example, you might see a command
that looks like this:

--admission-control=NamespaceLifecycle,PersistentVolumeLa

bel,PodSecurityPolicy, DenyEscalatingExec

Kubernetes 1.8 and 1.9 come with a set of built-in admission controls. For
this discussion, we will focus on two controllers: PodSecurityPolicy and
DenyEscalationExec.

PodSecurityPolicy
PodSecurityPolicy is a key admission control in the Kubernetes
environment. It allows the administrator to specify hardening constraints,
such as restricting privileged containers or privilege-escalating
operations. Once PodSecurityPolicy is specified, the target pod must run
with the conditions specified within the PodSecurity object in order to
be admitted into the cluster.

More specifically, PodSecurityPolicy allows an administrator to control
these security aspects of the pod:

• Whether to allow running of privileged containers.

• Whether to allow the pod access to the root namespaces, host
networking and ports, and the host filesystem.

• Whether the root filesystem should be read-only.

• Whether to allow privilege escalation.

• When applicable, the AppArmor and Seccomp profiles.

An example PodSecurityPolicy in YAML may look like this:

apiVersion: extensions/v1beta1

http://www.thenewstack.io

79Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

kind: PodSecurityPolicy

metadata:

 name: Example

spec:

 privileged: false

 allowPrivilegeEscalation: false

 runAsUser:

 rule: ‘MustRunAsNonRoot’

 hostNetwork: false

 seLinux:

 rule: ‘RunAsAny’

 fsGroup:

 rule: ‘RunAsAny’

With this policy, the target pods must satisfy these conditions:

• Containers cannot run in privileged mode.

• Containers that require root privileges are not allowed.

• Containers cannot access the host’s network directly.

• Privilege escalation is not allowed.

It is important to note that pod security policies can only be used if they
are enabled in the Kubernetes cluster’s admission controller.

Restricting containers from running as root, and in general creating a
more secure cluster environment are the most common uses for pod
security policies.

DenyEscalatingExec
If your pod runs privileged containers, it is a good practice to consider
the use of the DenyEscalationExec plugin. It denies exec and attach

http://www.thenewstack.io

80Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

commands to pods that run with escalated privileges.

If a user performs an exec or an attach command on a privileged
container, the user may attain privileges that he or she cannot attain
otherwise. This is why DenyEscalatingExec was created — if enabled,
the minute a user issues an exec command on the privileged container,
the admission controller will block that specific request to prevent
privilege escalation.

If you run containers with escalated privileges, you should strongly
consider enabling the DenyEscalatingExec plugin to mitigate your risk
against accidental privilege escalation. For those reasons,
DenyEscalatingExec is a key hardening control in Kubernetes.

Container Runtime Resource Isolation
Within the Kubernetes platform, there are two separate mechanisms via
which resources are isolated: Namespaces and Resource Quota.

Namespaces
Kubernetes Namespaces are a method of virtual partitioning to allow
multiple groups of users to share the same cluster, yet still retain isolation.
Resources within one namespace are not visible from other namespaces.

Namespaces is a useful construct in environments with different users
across many teams. You can create specific namespaces and assign users
and resources to them, and have different policies associated with
different namespaces.

Kubernetes starts with three initial namespaces:

• Default: The default namespace for objects with no other namespace.

• kube-system: The namespace for objects created by the Kubernetes
system.

http://www.thenewstack.io

81Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

• kube-public: The namespace that is readable by all users. It’s
reserved for resources that should be publicly readable throughout
the whole cluster.

An administrator can define additional namespaces. Whenever there is a
business case to partition a group of users while maintaining enterprise
central control you can use namespaces. For example, a common
practice is to have separate namespaces for development, testing/QA,
staging and production.

One of the biggest benefits of using namespaces is that you can use the
same name for services or endpoints across the different namespaces.
This means you don’t have to change the name of a service in testing to a
different name in staging or production. For instance, you can have
account_balance in testing and use exactly the same account_balance in
staging or production without fear of name collision. But, you can also use
full names like account_balance.dev.myapp to uniquely refer to the
account_balance service in the development namespace.

API access requests and authorization policies can all target a specific
namespace. For instance, you might see a request like this:

$ kubectl --namespace=AccountInfo run nginx --image=nginx

This request asks to run the NGINX image within the namespace called
AccountInfo. The ABAC policy below allows the user Alice to read pods
within the AccountInfo namespace.

{

 “apiVersion”: “abac.authorization.kubernetes.io/

v1beta1”,

 “kind”: “Policy”,

 “spec”: {

http://www.thenewstack.io

82Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

 “user”: “Alice”,

 “namespace”: “AccountInfo”

 “resource”: “pods”,

 “readonly”: true

 }

}

Resource Quotas
A recommended practice is that you do not run resource-unbound
containers because it puts your system at risk of resource starvation or a
denial-of-service attack. To minimize these risks, Kubernetes provides
resource quotas for administrators to define resource constraints that
apply to different namespaces.

A resource quota, defined by a ResourceQuota object, puts limits on
resource consumption for each namespace. For example, it can limit how
many pods (or other objects) can run in a namespace and the amount of
memory requests and CPU cycles that may be consumed by resources in
that namespace, as well as limit storage consumption.

Kubernetes enforces resource consumption for a particular namespace
when a ResourceQuota object is defined for that namespace in a
compute-resources.yaml file. Below is an example of such a YAML file
for the AccountInfo namespace.

$ kubectl create namespace AccountInfo

$ cat <<EOF > compute-resources.yaml

apiVersion: v1

kind: ResourceQuota

metadata:

http://www.thenewstack.io

83Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

 name: compute-resources

spec:

 hard:

 pods: “7”

 requests.cpu: “1”

 requests.memory: 2Gi

 limits.cpu: “3”

 limits.memory: 3Gi

EOF

This file specifies that there can be at most seven pods running in the
namespace. The memory request total for all containers must not exceed
2 gibibytes (GiB). The memory limit total for all containers must not
exceed 3 GiB. The CPU request total for all containers must not exceed 1
CPU. The CPU limit total for all containers must not exceed 3 CPU.

You can enable Resource Quotas by including ResourceQuota as one of
the --admission-control flag arguments.

Similarly, you can limit the storage resources, object count and local
ephemeral storage for a particular namespace.

Logging and Auditing
Logging and auditing is an important security function. Not only can
you use the logs for monitoring, debugging and forensics, you can also
use them to satisfy compliance requirements and generate compliance
reports.

In Kubernetes, it is useful to maintain cluster-level logs that are independent
from the logs generated by the container application, the container engine
or the host system. To that end, Kubernetes 1.9 provides a beta function —
Audit Logger — to perform separate logging and auditing functions.

http://www.thenewstack.io

84Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

Audit Logger records actions taken on the APIs by users, administrators or
other system components. More specifically, it records pertinent
information about an action, such as the action that happened, the time
when the action happened, the user that initiated the action, the
resources that the action affected and more.

An administrator can specify which events to be logged and how they are
logged by defining an audit-policy YAML file. For example, this audit-policy
file specifies metadata-level logging for access to the “secrets,”
“Configmaps” and “Tokenreviews” resources. Because these resources
may contain sensitive data, only log at the metadata level.

{

 apiVersion: audit.k8s.io/v1beta

 kind: Policy

 Rules:

 - Level: Metadata

 - Resources

 - group: “”

 Resources: [“secrets”, “Configmaps”]

 - group: “authentication.k8s.io”

 Resources: [“Tokenreviews”]

}

Network Policies
To minimize the risk of a compromised application attacking another
application in the same namespace, it is important to consider network
segmentation to ensure that pods only communicate with approved pods
and network sources.

http://www.thenewstack.io

85Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

By default, Kubernetes pods accept traffic from anyone. To isolate a pod
and restrict who can talk to it, you can use the NetworkPolicy resource.
Once enabled, it determines how pods can communicate with each other
and with other network endpoints.

Each NetworkPolicy must specify the group of pods to which the policy
applies. A NetworkPolicy that does not specify pods applies to all pods in
the namespace. In addition, the NetworkPolicy must define whether its
policies are for egress or ingress traffic.

Below is an example NetworkPolicy that denies all ingress traffic from
pods that are labeled “db” to all pods in the namespace.

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: default-deny

spec:

 podSelector: {}

 policyTypes:

 - Ingress

 - from:

 - podSelector:

 matchLabels: “db”

The NetworkPolicy construct can be used to configure automatic and
dynamic firewall rules, which are deployed when certain conditions are
met. However, to achieve true microsegmentation, the policies must go
beyond ingress, egress, IP and ports.

http://www.thenewstack.io

86Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

Suggested Best Practices
It is important to understand that many open source distributions of
Kubernetes may not have every security feature enabled or even included
by default. Therefore, it requires intimate knowledge of the Kubernetes
platform to configure the system properly and ensure secure operations.

As an alternative to managing your own Kubernetes clusters, you could
consider using commercial management platforms such as Red Hat
OpenShift and CoreOS Tectonic. These uber-management platforms
typically include already configured security plugins and policies, which
can be a good starting point.

For those who prefer to configure and manage Kubernetes directly, some
emerging commercial products can make your task a little easier. Alcide,
Aqua Security, Cavirin, HyTrust and Twistlock offer products that let you
specify a high-level policy, which can be translated automatically to
Kubernetes-native policies and controls.

Of course, Kubernetes itself provides many options to craft your specific
security policies and enforcement. We recommend that you start with
these simple actions:

Configure PodSecurityPolicy to Properly
Control Runtime Privileges
Make sure that you configure PodSecurityPolicy properly to set proper
privileges and rights for your namespaces, pods, containers and volumes.
Some of the important questions to ask are:

• Does the pod need to run in a privileged mode?

• Does privilege escalation need to be allowed?

• Does the pod need to be allowed access to the host network, process

http://www.thenewstack.io
http://red.ht/2uJGuQo
http://red.ht/2uJGuQo
http://bit.ly/2uJMGYG
http://bit.ly/2zazqgJ
http://bit.ly/2j9HTY7
https://www.cavirin.com/
https://www.hytrust.com
http://bit.ly/2sOzS1A

87Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

ID and inter-process communication (IPC) namespace?

• Do containers need to be run as root?

For each of the questions, choose “no” by default unless you absolutely
have to say “yes.” In this case, the conservative approach is usually the
safer choice, because even the simple option of permitting pods access to
host network (i.e., “hostNetwork=true”) can result in unwanted privilege
escalations.

Enable Authorization Plugins and Appropriate
Admission Controls
Authentication and authorization plugins can help you define fine-
grained access control policies for your Kubernetes resources. Role-
based Access Control (RBAC) and Attribute-based Access Control (ABAC)
are critical tools to contain cluster-wide compromises. Spend time to
determine which are the right controls for your environment. For
example, enabling certain admission controllers such as
DenyEscalatingExec is a good hygiene practice, but may impede special
operations or corner use cases.

Use a NetworkPolicy Object to Restrict Access
to Services
Service-level security is critical to a microservices environment. In
addition to enabling client certificates and ensuring proper
authentication and authorization, a Kubernetes administrator should
utilize NetworkPolicy as an important construct to provide network
isolation. By imposing restrictions on who can talk to whom, an
administrator can reduce the system attack surface and improve the
cluster’s security posture.

Manage Cluster Vulnerabilities Proactively
Vulnerabilities within a cluster present opportunities for exploits and

http://www.thenewstack.io

88Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

KUBERNETES SECURITY PATTERNS

attacks. These may either arise from a container image or from the
environment, such as the operating system or even at the hardware level
(e.g., the recent Spectre/Meltdown zero days). As such, an administrator
must manage cluster vulnerabilities proactively. That means utilizing
vulnerability assessment and management tools throughout the life cycle
of the application, the environment and the deployment process to
ensure that only robust code is deployed and that the environment is free
of known defects and configuration vulnerabilities.

Control Security From a Life Cycle Standpoint
Making Kubernetes secure is not just a runtime proposition. Rather,
security needs to be treated from an end-to-end life cycle perspective.
This means the administrator must:

• Ensure only approved code is built into the images and only approved
images make it into production.

• Configure and harden the node environment.

• Ensure the right set of controls are enabled for the runtime
environment.

• Log everything and log always.

http://www.thenewstack.io

89Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS 89

What is the context for Kubernetes if the data
center is Mount Olympus? Alcide co-founder and
CTO Gadi Naor makes this analogy between the
mythic Mount Olympus, home of the gods, and

the modern data center in this podcast interview with The New
Stack founder and Editor-in-Chief Alex Williams.

The comparison brings into play a concept about how the overall
organization views infrastructure. The data center, now
empowered by Kubernetes, is a core asset that must be valued and
protected the way Hercules guarded Olympus.

Cloud-native technologies are considerably complex. Existing
network security does not meet the new demands that come with
containers. It may provide a top-view policy, but there needs to be
more than that. What’s needed is what Naor calls “policy fusion,”
that allows for multiple policies to be unified in one cohesive
manner so security may run at scale and organizations may take
true advantage of Kubernetes’ scalability. Listen on SoundCloud.

Gadi Naor, co-founder and CTO of Alcide, brings 15 years of
experience in leading the development of cyber security products.
Previously, he worked at CheckPoint leading the development of

Firewall core security engine and VPN software. Naor also served as a senior
software engineer at Altor Networks, a pioneer in virtualized data center
security, later acquired by Juniper Networks.

SECURING
A KUBERNETES
DEPLOYMENT

http://bit.ly/2zazqgJ
https://soundcloud.com/thenewstackmakers/the-data-center-is-olympus-operational-approaches-to-securing-a-kubernetes-deployment
https://soundcloud.com/thenewstackmakers/the-data-center-is-olympus-operational-approaches-to-securing-a-kubernetes-deployment

90Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

CLOSING
Kubernetes is like a hive. It’s constantly managing microservices that
traverse across its connected infrastructure. There is no single, correct
way to assess it. No tidy command or single pane of glass that will give
you visibility and clarity. To make sense of this complex infrastructure, it
helps to evaluate Kubernetes by focusing on the value your organization
puts on factors such as security, storage, logging and load balancing.
These factors help define how companies manage workloads, whether on
cloud services, on-premises or through a multi-cloud approach.

Kubernetes has fast emerged as the standard for container orchestration
and plays a critical role in enterprise IT modernization. In this book, our
focus has been on informing the operations teams that deploy and
manage the clusters needed for containerized applications. As more and
more workloads move to Kubernetes-based container deployments, IT
operations teams need a lens for understanding various deployment and
security patterns.

With this second book in The New Stack’s Kubernetes series, we’ve aimed
to help cluster operators deploy Kubernetes to manage containerized
workloads. This book has covered various deployment patterns and
security considerations that will help them in the process. The next, and
final, part in our Kubernetes ebook series will cover application patterns
for Kubernetes and delivery best practices for developers and DevOps
professionals. Taken as a whole, this three-part series will give you a firm
foundation to prepare your own Kubernetes deployments and understand
this complex project and ecosystem. But reading and planning can only
get you so far — the next, and best, way to learn what works for your
organization is to go out there and try it. Best of luck with your Kubernetes
deployments and godspeed!

91Ĵ KUBERNETES DEPLOYMENT & SECURITY PATTERNS

DISCLOSURE
In addition to our ebook sponsors, the following companies mentioned in
this ebook are sponsors of The New Stack:

AppDynamics, Aqua Security, Blue Medora, Buoyant, CA Technologies,
Chef, CircleCI, Cloud Foundry Foundation, Cloud Native Computing
Foundation, {code}, Codeship, Containership, CoreOS, Dell Technologies,
DigitalOcean, Google, HPE, InfluxData, Mesosphere, Microsoft, OpenStack
Foundation, PagerDuty, Portworx, Puppet, Red Hat, SaltStack, StackRox,
The Linux Foundation, Univa, VMware, Wercker and WSO2.

thenewstack.io

https://www.thenewstack.io
https://www.thenewstack.io

	Disclosure
	Closing
	Securing
a Kubernetes Deployment
	Kubernetes Security Patterns
	Why Cloud-Native
Architectures Are Inherently More Secure
	Kubernetes Deployment Patterns
	Strengthening the
Kubernetes Core for
Improved Operations
	What the Data Says About Kubernetes Deployments
	Sponsors
	Introduction

